
dolo Documentation
Release 0.4.9.2

Pablo Winant

January 21, 2015

Contents

1 Index 1
1.1 Introduction: What is dolo ? . 1
1.2 Installation . 1
1.3 Quick Tutorial . 1

1.3.1 Solving the rbc model . 1
1.3.2 Decision rule . 3
1.3.3 Use the model to simulate . 4
1.3.4 Error measures . 8

1.4 Dolo modeling language . 10
1.4.1 YAML format . 10
1.4.2 Declaration of symbols . 11
1.4.3 Declaration of equations . 11
1.4.4 Calibration section . 11
1.4.5 Shock specification . 11
1.4.6 Options . 11

1.5 Dolo Model Classification . 11
1.5.1 Dynare models . 11
1.5.2 Discrete Time - Continuous States - Continuous Controls models (DTCSCC) 11
1.5.3 Discrete Time - Mixed States - Continuous Controls models (DTMSCC) 14
1.5.4 Misc . 17
1.5.5 Additional informations . 18

1.6 Solution algorithms . 18
1.6.1 Algorithms for DTCSCC models . 18
1.6.2 Algorithms for DTMSCC models . 19
1.6.3 Algorithms for Dynare models . 19

1.7 Examples . 19
1.7.1 Other languages: . 19

1.8 Frequently Asked Questions . 19
1.9 Advanced topics . 19

1.9.1 Custom model types . 19
1.9.2 Model object . 21
1.9.3 Interpolation . 21
1.9.4 Compilation . 21
1.9.5 Model conventions . 21

i

ii

CHAPTER 1

Index

1.1 Introduction: What is dolo ?

1.2 Installation

Dolo can be installed using the standard python command pip. You can choose between one of the three following
options.

• To install last version from PyPI directories:

‘pip install dolo‘

• To install last version from github (requires git on your computer):

pip install git+https://github.com/albop/dolo.git

• To install dolo from your own clone of the dolo repository. Type from this directory:

pip install -e .

The option -e tells the installer to make symlinks so that the installed version is automatically updated when a new
version is pulled.

1.3 Quick Tutorial

1.3.1 Solving the rbc model

This worksheet demonstrates how to solve the RBC model with the dolo library and how to generates impulse re-
sponses and stochastic simulations from the solution.

• This notebook is distributed with dolo in : examples\notebooks\. The notebook was opened and run from
that directory.

• The model file is in : examples\global_models\

First we import the dolo library.

%pylab inline

Populating the interactive namespace from numpy and matplotlib

1

http://econforge.github.io/dolo/

dolo Documentation, Release 0.4.9.2

from dolo import *

The RBC model is defined in a YAML file which we can read locally or pull off the web.

filename = (’https://raw.githubusercontent.com/EconForge/dolo’
’/master/examples/models/rbc.yaml’)

#filename=’../models/rbc.yaml’

pcat(filename)

yaml_import(filename) reads the YAML file and generates a model object.

model = yaml_import(filename)

The model file already has values for steady-state variables stated in the calibration section so we can go ahead and
check that they are correct by computing the model equations at the steady state.

model.residuals()

OrderedDict([(’transition’, array([0.00000000e+00, 2.50466314e-13])), (’arbitrage’, array([-1.01030295e-14, -3.78141962e-12])), (’auxiliary’, array([-3.28626015e-13, 7.63278329e-17, 4.48352466e-12])), (’value’, array([7.81597009e-14]))])

Printing the model also lets us have a look at all the model equations and check that all residual errors are 0 at the
steady-state, but with less display prescision.

print(model)

Model object:

- name: "RBC"
- type: "fga"
- file: "https://raw.githubusercontent.com/EconForge/dolo/master/examples/models/rbc.yaml

- residuals:

transition
1 : 0.0000 : z = (1-rho)*zbar + rho*z(-1) + e_z
2 : 0.0000 : k = (1-delta)*k(-1) + i(-1)

arbitrage
1 : 0.0000 : 1 = beta*(c/c(1))**(sigma)*(1-delta+rk(1)) | 0 <= i <= inf
2 : 0.0000 : w - chi*n**eta*c**sigma | 0 <= n <= inf

auxiliary
1 : 0.0000 : c = z*k**alpha*n**(1-alpha) - i
2 : 0.0000 : rk = alpha*z*(n/k)**(1-alpha)
3 : 0.0000 : w = (1-alpha)*z*(k/n)**(alpha)

value
1 : 0.0000 : V = log(c) + beta*V(1)

Next we compute a solution to the model using a second order perturbation method (see the source for the approxi-
mate_controls function). The result is a decsion rule object. By decision rule we refer to any object is callable and maps
states to decisions. This particular decision rule object is a TaylorExpansion (see the source for the TaylorExpansion
class).

dr_pert = approximate_controls(model, order=2)

2 Chapter 1. Index

http://www.yaml.org/spec/1.2/spec.html#Introduction
https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/perturbations.py
https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/perturbations.py
https://github.com/EconForge/dolo/blob/master/dolo/numeric/taylor_expansion.py

dolo Documentation, Release 0.4.9.2

There are 2 eigenvalues greater than 1. Expected: 2.

We now compute the global solution (see the source for the time_iteration function). It returns a decision rule object
of type SmolyakGrid (see the source for the SmolyakGrid class).

dr_global = time_iteration(model, pert_order=1, smolyak_order=3)

1.3.2 Decision rule

Here we plot optimal investment and labour for different levels of capital (see the source for the plot_decision_rule
function).

Decisionbounds = [dr_global.smin[1], dr_global.smax[1]]

figsize(8,3.5)

subplot(121)
plot_decision_rule(model, dr_global, ’k’, ’i’, label=’Global’, bounds=bounds)
plot_decision_rule(model, dr_pert, ’k’, ’i’, label=’Perturbation’, bounds=bounds)
ylabel(’i’)
title(’Investment’)
legend()

subplot(122)
plot_decision_rule(model, dr_global, ’k’, ’n’, label=’Global’, bounds=bounds)
plot_decision_rule(model, dr_pert, ’k’, ’n’, label=’Perturbation’, bounds=bounds)
ylabel(’n’)
title(’Labour’)
legend()

tight_layout()
show()

It would seem, according to this, that second order perturbation does very well for the RBC model. We will revisit this
issue more rigorously when we explore the deviations from the model’s arbitrage section equations.

Let us repeat the calculation of investment decisions for various values of the depreciation rate, 𝛿. Note that this is a
comparative statics exercise, even though the models compared are dynamic.

1.3. Quick Tutorial 3

https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/time_iteration.py
https://github.com/EconForge/dolo/blob/master/dolo/numeric/interpolation/smolyak.py
https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/simulations.py

dolo Documentation, Release 0.4.9.2

original_delta=model.calibration_dict[’delta’]

drs = []
delta_values = linspace(0.01, 0.04,5)
for val in delta_values:

model.set_calibration(delta=val)
drs.append(approximate_controls(model, order=2))

figsize(5,3)

for i,dr in enumerate(drs):
plot_decision_rule(model, dr, ’k’, ’i’,

label=’$\delta={}$’.format(delta_values[i]),
bounds=bounds)

ylabel(’i’)
title(’Investment’)
legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
show()

model.set_calibration(delta=original_delta)

There are 2 eigenvalues greater than 1. Expected: 2.
There are 2 eigenvalues greater than 1. Expected: 2.
There are 2 eigenvalues greater than 1. Expected: 2.
There are 2 eigenvalues greater than 1. Expected: 2.
There are 2 eigenvalues greater than 1. Expected: 2.

We find that more durable capital leads to higher steady state investment and slows the rate of convergence for capital
(the slopes are roughly the same, which implies that relative to steady state capital investment responds stronger at
higher 𝛿, this in addition to the direct effect of depreciation).

1.3.3 Use the model to simulate

We will use the deterministic steady-state as a starting point.

4 Chapter 1. Index

dolo Documentation, Release 0.4.9.2

s0 = model.calibration[’states’]
print(str(model.symbols[’states’])+’=’+str(s0))

[’z’, ’k’]=[1. 9.35497829]

We also get the covariance matrix just in case. This is a one shock model so all we have it the variance of 𝑒𝑧 .

sigma2_ez = model.covariances
sigma2_ez

array([[0.000256]])

Impulse response functions

Consider a 10% shock on productivity.

s1 = s0.copy()
s1[0] *= 1.1
print(str(model.symbols[’states’])+’=’+str(s1))

[’z’, ’k’]=[1.1 9.35497829]

The simulate function is used both to trace impulse response functions and compute stochastic simulations. Choos-
ing n_exp>=1, will result in that many “stochastic” simulations. With n_exp = 0, we get one single simulation
without any stochastic shock (see the source for the simulate function). The output is a panda table of size 𝐻 × 𝑛𝑣

where 𝑛𝑣 is the number of variables in the model and 𝐻 the number of dates.

irf = simulate(model, dr_global, s1, n_exp=0, horizon=40)
print(irf.__class__)
print(irf.shape)

<class ’pandas.core.frame.DataFrame’>
(40, 7)

Let us plot the response of consumption and investment.

figsize(8,4)
subplot(221)
plot(irf[’z’])
title(’Productivity’)
subplot(222)
plot(irf[’i’])
title(’Investment’)
subplot(223)
plot(irf[’n’])
title(’Labour’)
subplot(224)
plot(irf[’c’])
title(’Consumption’)

tight_layout()

1.3. Quick Tutorial 5

https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/simulations.py

dolo Documentation, Release 0.4.9.2

Note that the plotting is made using the wonderful matplotlib library. Read the online tutorials to learn how to cus-
tomize the plots to your needs (e.g., using latex in annotations). If instead you would like to produce charts in Matlab,
you can easily export the impulse response functions, or any other matrix, to a .mat file.

irf_array = array(irf)
import scipy.io
scipy.io.savemat("export.mat", {’table’: irf_array})

Now Stochastic simulations

Now we run 1000 random simulations the result is an array of size 𝐻 × 𝑛𝑒𝑥𝑝 × 𝑛𝑣 where - 𝐻 the number of dates -
𝑛𝑒𝑥𝑝 the number of simulations - 𝑛𝑣 is the number of variables

sim = simulate(model, dr_global, s0, n_exp=1000, horizon=40)
print(sim.shape)

(40, 1000, 7)

model.variables

(’z’, ’k’, ’i’, ’n’, ’c’, ’rk’, ’w’)

We plot the responses of consumption, investment and labour to the stochastic path of productivity.

i_z = model.variables.index(’z’)
i_i = model.variables.index(’i’)
i_n = model.variables.index(’n’)
i_c = model.variables.index(’c’)
figsize(8,4)
for i in range(1000):

subplot(221)
plot(sim[:, i, i_z], color=’red’, alpha=0.1)
subplot(222)
plot(sim[:, i, i_i], color=’red’, alpha=0.1)
subplot(223)
plot(sim[:, i, i_n], color=’red’, alpha=0.1)

6 Chapter 1. Index

http://matplotlib.org/users/pyplot_tutorial.html
http://matplotlib.org/users/beginner.html
http://matplotlib.org/users/usetex.html

dolo Documentation, Release 0.4.9.2

subplot(224)
plot(sim[:, i, i_c], color=’red’, alpha=0.1)

subplot(221)
title(’Productivity’)
subplot(222)
title(’Investment’)
subplot(223)
title(’Labour’)
subplot(224)
title(’Consumption’)

tight_layout()

We find that while the distribution of investment and labour converges quickly to the ergodic distribution, that of
consumption takes noticeably longer. This is indicative of higher persistence in consumption, which in turn could be
explained by permanent income considerations.

Descriptive statistics

The success of the RBC model is in being able to mimic patterns in the descriptive statistics of the real economy. Let
us compute some of these descriptive statistics from our sample of stochastic simulations. First we compute growth
rates:

dsim = log(sim[1:,:,:]/sim[:-1,:,:,])
print(dsim.shape)

(39, 1000, 7)

Then we compute the volatility of growth rates for each simulation:

volat = dsim.std(axis=0)
print(volat.shape)

(1000, 7)

1.3. Quick Tutorial 7

dolo Documentation, Release 0.4.9.2

Then we compute the mean and a confidence interval for each variable. In the generated table the first column contains
the standard deviations of growth rates. The second and third columns contain the lower and upper bounds of the 95%
confidence intervals, respectively.

table = column_stack([
volat.mean(axis=0),
volat.mean(axis=0)-1.96*volat.std(axis=0),
volat.mean(axis=0)+1.96*volat.std(axis=0)])

table

array([[0.01667413, 0.01280193, 0.02054634],
[0.00296542, 0.00175695, 0.00417388],
[0.09196494, 0.06834055, 0.11558933],
[0.01028367, 0.00788583, 0.01268152],
[0.00313835, 0.00236476, 0.00391193],
[0.02426923, 0.01861151, 0.02992694],
[0.01303212, 0.01002955, 0.01603469]])

We can use the pandas library to present the results in a nice table.

model.variables

(’z’, ’k’, ’i’, ’n’, ’c’, ’rk’, ’w’)

import pandas
df = pandas.DataFrame(table, index=model.variables,

columns=[’Growth rate std.’,
’Lower 95% bound’,
’Upper 95% bound’])

pandas.set_option(’precision’, 4)
df

1.3.4 Error measures

It is always important to get a handle on the accuracy of the solution. The omega function computes and aggregates
the errors for the model’s arbitrage section equations. For the RBC model these are the investment demand and labor
supply equations. For each equation it reports the maximum error over the domain and the mean error using ergodic
distribution weights (see the source for the omega function).

ErrorErrorfrom dolo.algos.dtcscc.accuracy import omega

print("Perturbation solution")
err_pert = omega(model, dr_pert)
err_pert

Perturbation solution

Euler Errors:
- max_errors : [0.00019241 0.00045583]
- ergodic : [1.37473238e-04 1.69920101e-05]

print("Global solution")
err_global=omega(model, dr_global)
err_global

Global solution

8 Chapter 1. Index

http://pandas.pydata.org/pandas-docs/stable/10min.html
https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/accuracy.py

dolo Documentation, Release 0.4.9.2

Euler Errors:
- max_errors : [1.38008607e-04 2.28991817e-06]
- ergodic : [1.32367122e-04 6.62075500e-07]

The result of omega is a subclass of dict. omega fills that dict with some useful information that the default print
does not reveal:

err_pert.keys()

[’domain’, ’errors’, ’densities’, ’ergodic’, ’max_errors’, ’bounds’]

In particular the domain field contains information, like bounds and shape, that we can use to plot the spatial pattern
of errors.

a = err_pert[’domain’].a
b = err_pert[’domain’].b
orders = err_pert[’domain’].orders
errors = concatenate((err_pert[’errors’].reshape(orders.tolist()+[-1]),

err_global[’errors’].reshape(orders.tolist()+[-1])),
2)

figure(figsize=(8,6))

titles=["Investment demand pertubation errors",
"Labor supply pertubation errors",
"Investment demand global errors",
"Labor supply global errors"]

for i in range(4):

subplot(2,2,i+1)
imgplot = imshow(errors[:,:,i], origin=’lower’,

extent=(a[0], b[0], a[1], b[1]), aspect=’auto’)
imgplot.set_clim(0,3e-4)
colorbar()
xlabel(’z’)
ylabel(’k’)
title(titles[i])

tight_layout()

1.3. Quick Tutorial 9

dolo Documentation, Release 0.4.9.2

1.4 Dolo modeling language

1.4.1 YAML format

Dolo describes yaml files to describe models.

10 Chapter 1. Index

dolo Documentation, Release 0.4.9.2

1.4.2 Declaration of symbols

1.4.3 Declaration of equations

1.4.4 Calibration section

1.4.5 Shock specification

Normally distributed shocks

Markov chains mini-language

1.4.6 Options

Approximation space

1.5 Dolo Model Classification

1.5.1 Dynare models

A Dynare model is specified by a set of equations captured by one vector function 𝑓 so that the vector of endogeneous
states 𝑦𝑡 satisfies

0 = 𝐸𝑡𝑓(𝑦𝑡−1, 𝑦𝑡, 𝑦𝑡+1, 𝜖𝑡)

where 𝜖𝑡 is a vector of exogenous variables following an i.i.d. series of shocks.

In this formulation, any variable appearing at date 𝑡 − 1 in the system (a predetermined variable) is part of the state-
space as well as all shocks. Hence, the solution of the system is a function 𝑔 such that:

𝑦𝑡 = 𝑓(𝑦𝑡−1, 𝜖𝑡)

1.5.2 Discrete Time - Continuous States - Continuous Controls models (DTCSCC)

Solution

State-space is characterized by a vector 𝑠 of continuous variables. The unknown vector of controls 𝑥 is expressed by
a function 𝜙 such that:

𝑥 = 𝜙(𝑠)

Transitions

- name: ‘transition‘
- short name: ‘g‘

Transitions are given by a function 𝑔 such that at all times:

𝑠𝑡 = 𝑔(𝑠𝑡−1, 𝑥𝑡−1, 𝜖𝑡)

where 𝜖𝑡 is a vector of i.i.d. shocks.

1.5. Dolo Model Classification 11

dolo Documentation, Release 0.4.9.2

Value equation

- name: ‘value‘
- short name: ‘v‘

The (separable) value equation defines a value 𝑣𝑡 as:

𝑣𝑡 = 𝑈(𝑠𝑡, 𝑥𝑡) + 𝛽𝐸𝑡 [𝑣𝑡+1]

In general the Bellman equations are completely characterized by the reward function 𝑈 and the discount rate 𝛽.

Note that several values can be computed at once, if 𝑈 is a vector function and 𝛽 a vector of discount factors.

Generalized Value Equation

- name: ‘value_2‘
- short name: ‘v_2‘

A more general updating equation can be useful to express non-separable utilities or prices. In that case, we define a
function 𝑈* such that

𝑣*𝑡 = 𝑈*(𝑠𝑡, 𝑥𝑡, 𝑣
*
𝑡 , 𝑠𝑡+1, 𝑥𝑡+1, 𝑣

*
𝑡+1)

This equation defines the vector of (generalized) values 𝑣*

Boundaries

- name: ‘controls_lb‘ and ‘controls_ub‘
- short name: ‘lb‘ and ‘ub‘

The optimal controls must also satisfy bounds that are function of states. There are two functions 𝑏() and 𝑏() such that:

𝑏(𝑠𝑡) ≤ 𝑥𝑡 ≤ 𝑏(𝑠𝑡)

Euler equation

- name: ‘arbitrage‘ (‘equilibrium‘)
- short name: ‘f‘

A general formulation of the Euler equation is:

0 = 𝐸𝑡[𝑓(𝑠𝑡, 𝑥𝑡, 𝑠𝑡+1, 𝑥𝑡+1)]

Note that the Euler equation and the boundaries interact via “complentarity equations”. Evaluated at one given state,
with the vector of controls 𝑥 = (𝑥1, ..., 𝑥𝑖, ..., 𝑥𝑛𝑥

), the Euler equation gives us the residuals $r=(f_1, ..., f_i, ...,
f_{n_x})$. Suppose that the 𝑖-th control 𝑥𝑖 is supposed to lie in the interval [𝑏 * 𝑖, 𝑏 * 𝑖]. Then one of the following
conditions must be true:

• 𝑓𝑖 = 0

• 𝑓𝑖 > 0 and 𝑥𝑖 = 𝑏𝑖

• 𝑓𝑖 < 0 and 𝑥𝑖 = 𝑏𝑖

By definition, this set of conditions is denoted by:

• $f_i = 0 perp underline{b}i leq xi leq overline{b}_i$

12 Chapter 1. Index

dolo Documentation, Release 0.4.9.2

These notations extend to a vector setting so that the Euler equations can also be written:

0 = 𝐸𝑡[𝑓(𝑠𝑡, 𝑥𝑡, 𝑠𝑡+1, 𝑥𝑡+1)] ⊥ 𝑏(𝑠𝑡) ≤ 𝑥𝑡 ≤ 𝑏(𝑠𝑡)

Specifying the boundaries together with Euler equation, or specifying them as independent equations is (read: should
be) equivalent. In any case, when the boundaries are finite and occasionally binding, some attention should be devoted
to write the Euler equations in a consistent manner. In particular, note, that the Euler equations are order-sensitive.

The Euler conditions, together with the complementarity conditions typically come from the Kuhn-Tucker conditions
associated with the maximization problem, but that is not true in general.

Expectations

- name: ‘expectation‘
- short name: ‘h‘

The vector of explicit expectations 𝑧𝑡 is defined by a function ℎ such that:

𝑧𝑡 = 𝐸𝑡 [ℎ(𝑠𝑡+1, 𝑥𝑡+1)]

Generalized expectations

- name: ‘expectation_2‘
- short name: ‘h_2‘

The vector of generalized explicit expectations 𝑧𝑡 is defined by a function ℎ⋆ such that:

𝑧𝑡 = 𝐸𝑡 [ℎ
⋆(𝑠𝑡, 𝑥𝑡, 𝜖𝑡+1, 𝑠𝑡+1, 𝑥𝑡+1)]

Euler equation with explicit equations

- name: ‘arbitrage_2‘ (‘equilibrium_2‘)
- short name: ‘f_2‘

If expectations are defined using one of the two preceding definitions, the Euler equation can be rewritten as:

0 = 𝑓(𝑠𝑡, 𝑥𝑡, 𝑧𝑡) ⊥ 𝑏(𝑠𝑡) ≤ 𝑥𝑡 ≤ 𝑏(𝑠𝑡)

Direct response function

- name: ‘direct_response‘
- short name: ‘d‘

In some simple cases, there a function 𝑑() giving an explicit definition of the controls:

𝑥𝑡 = 𝑑(𝑠𝑡, 𝑧𝑡)

Compared to the preceding Euler equation, this formulation saves computational time by removing to solve a nonlinear
to get the controls implicitly defined by the Euler equation.

Terminal conditions

1.5. Dolo Model Classification 13

dolo Documentation, Release 0.4.9.2

- name: ‘terminal_control‘
- short name: ‘f_T‘

When solving a model over a finite number 𝑇 of periods, there must be a terminal condition defining the controls for
the last period. This is a function 𝑓𝑇 such that:

0 = 𝑓𝑇 (𝑠𝑇 , 𝑥𝑇)

Terminal conditions

- name: ‘terminal_control_2‘
- short name: ‘f_T_2‘

When solving a model over a finite number 𝑇 of periods, there must be a terminal condition defining the controls for
the last period. This is a function 𝑓𝑇,⋆ such that:

𝑥𝑇 = 𝑓𝑇,⋆(𝑠𝑇)

Auxiliary variables

- name: ‘auxiliary‘
- short name: ‘a‘

In order to reduce the number of variables, it is useful to define auxiliary variables 𝑦𝑡 using a function 𝑎 such that:

𝑦𝑡 = 𝑎(𝑠𝑡, 𝑥𝑡)

When they appear in an equation they are automatically substituted by the corresponding expression in 𝑠𝑡 and 𝑥𝑡.

1.5.3 Discrete Time - Mixed States - Continuous Controls models (DTMSCC)

The definitions for this class of models differ from the former ones by the fact that states are split into exogenous and
discrete markov states, and endogenous continous states as before. Most of the definition can be readily transposed by
replacing only the state variables.

State-space and solution

For this kind of problem, the state-space, is the cartesian product of a vector of “markov states” 𝑚𝑡 that can take a
finite number of values and a vector of “continuous states” 𝑠𝑡 which takes continuous values.

The unknown controls 𝑥𝑡 is a function 𝜙 such that:

𝑥𝑡 = 𝜙(𝑚𝑡, 𝑠𝑡)

Transitions

- name: ‘transition‘
- short name: ‘g‘

14 Chapter 1. Index

dolo Documentation, Release 0.4.9.2

(𝑚𝑡) follows an exogenous and discrete markov chain. The whole markov chain is specified by two matrices 𝑃,𝑄
where each line of 𝑃 is one admissible value for 𝑚𝑡 and where each element 𝑄(𝑖, 𝑗) is the conditional probability to
go from state 𝑖 to state 𝑗.

The continuous states 𝑠𝑡 evolve after the law of motion:

𝑠𝑡 = 𝑔(𝑠𝑡−1, 𝑥𝑡−1, 𝜖𝑡) : 𝑚𝑎𝑡ℎ : ‘𝑤ℎ𝑒𝑟𝑒‘𝜖𝑡

where 𝜖𝑡 is a vector of i.i.d. shocks.

Boundaries

- name: ‘controls_lb‘, ‘controls_ub‘
- short name: ‘lb‘, ‘ub‘

The optimal controls must satisfy bounds that are function of states. There are two functions 𝑏() and 𝑏() such that:

𝑏(𝑚𝑡, 𝑠𝑡) ≤ 𝑥𝑡 ≤ 𝑏(𝑚𝑡, 𝑠𝑡)

Value Equation

- name: ‘value‘
- short name: ‘v‘

The (separable) Bellman equation defines a value 𝑣𝑡 as:

𝑣𝑡 = 𝑈(𝑚𝑡, 𝑠𝑡, 𝑥𝑡)‖𝛽𝐸𝑡 [𝑣𝑡+1]

It is completely characterized by the reward function 𝑈 and the discount rate 𝛽.

Generalized Value Equation

- name: ‘value_2‘
- short name: ‘v_2‘

The generalized value equation defines a value 𝑣⋆𝑡 as:

: 𝑚𝑎𝑡ℎ : ‘𝑣⋆𝑡 = 𝑈⋆(𝑚𝑡, 𝑠𝑡, 𝑥𝑡, 𝑣
⋆,𝑚𝑡+1, 𝑠𝑡+1, 𝑥𝑡+1)‘

Euler equation

- name: ‘arbitrage‘ (‘equilibrium‘)
- short name: ‘f‘

Many Euler equations can be defined a function 𝑓 such that:

0 = 𝐸𝑡 (𝑓(𝑚𝑡, 𝑠𝑡, 𝑥𝑡,𝑚𝑡+1, 𝑠𝑡+1, 𝑥𝑡+1)) ⊥ 𝑏(𝑚𝑡, 𝑠𝑡) ≤ 𝑥𝑡 ≤ 𝑏(𝑚𝑡, 𝑠𝑡)

See discussion about complementarity equations in the Continuous States - Continuous Controls section.

Expectations

1.5. Dolo Model Classification 15

dolo Documentation, Release 0.4.9.2

- name: ‘expectation‘
- short name: ‘h‘

The vector of explicit expectations 𝑧𝑡 is defined by a function ℎ such that:

𝑧𝑡 = 𝐸𝑡 [ℎ(𝑚𝑡+1, 𝑠𝑡+1, 𝑥𝑡1)]

Generalized expectations

- name: ‘expectation_2‘
- short name: ‘h_2‘

The vector of generalized explicit expectations 𝑧𝑡 is defined by a function ℎ⋆ such that:

𝑧𝑡 = 𝐸𝑡 [ℎ
⋆(𝑚𝑡, 𝑠𝑡, 𝑥𝑡,𝑚𝑡+1, 𝑠𝑡+1, 𝑥𝑡+1)]

Euler equation with explicit equations

- name: ‘arbitrage_2‘ (‘equilibrium_2‘)
- short name: ‘f_2‘

If expectations are defined using one of the two preceding definitions, the Euler equation can be rewritten as:

0 = 𝑓(𝑚𝑡, 𝑠𝑡, 𝑥𝑡, 𝑧𝑡) ⊥ 𝑏(𝑠𝑡) ≤ 𝑥𝑡 ≤ 𝑏(𝑠𝑡)

Direct response function

- name: ‘direct_response‘
- short name: ‘d‘

In some simple cases, there a function 𝑑() giving an explicit definition of the controls:

𝑥𝑡 = 𝑑(𝑠𝑡, 𝑧𝑡)

Compared to the preceding Euler equation, this formulation saves computational time by removing to solve a nonlinear
to get the controls implicitly defined by the Euler equation.

Direct states function

- name: ‘direct_states‘
- short name: ‘d_s‘

For some applications, it is also useful to have a function 𝑑⋆ which gives the endogenous states as a function of the
controls and the exogenous markov states:

𝑠𝑡 = 𝑑⋆(𝑚𝑡, 𝑥𝑡)

Auxiliary variables

- name: ‘auxiliary‘
- short name: ‘a‘

In order to reduce the number of variables, it is useful to define auxiliary variables 𝑦𝑡 using a function 𝑎 such that:

𝑦𝑡 = 𝑎(𝑚𝑡, 𝑠𝑡, 𝑥𝑡)

16 Chapter 1. Index

dolo Documentation, Release 0.4.9.2

Terminal conditions

- name: ‘terminal_control‘
- short name: ‘f_T‘

When solving a model over a finite number 𝑇 of periods, there must be a terminal condition defining the controls for
the last period. This is a function 𝑓𝑇 such that:

𝑥𝑇 = 𝑓𝑇 (𝑚𝑇 , 𝑠𝑇)

Terminal conditions (explicit)

- name: ‘terminal_control‘
- short name: ‘f_T_2‘

When solving a model over a finite number 𝑇 of periods, there must be a terminal condition defining the controls for
the last period. This is a function 𝑓𝑇,⋆ such that:

𝑓𝑇,⋆(𝑚𝑇 , 𝑠𝑇 , 𝑥𝑇)

1.5.4 Misc

Variables

For DTCSCC and DTMSCC models, the following list variable types can be used (abbreviation in parenthesis):
Required:

• states (s)

• controls (x) For DTCSCC only:

• shocks (e) For DTMSCC only:

• markov_states (m) Optional:

• auxiliaries (y)

• values (v)

• values_2 (v_2)

• expectations (z)

• expectations_2 (z_2)

Algorithms

Several algorithm are available to solve a model, depending no the functions that are specified.

Dynare model DTCSCC DTMSCC
Perturbations yes (f,g) no
Perturbations (higher order) yes (f,g) no
Value function iteration (v,g) (v,g)
Time iteration (f,g),(f,g,h) (f,g),(f,g,h)
Parameterized expectations (f,g,h) (f,g,h)
Parameterized expectations (2) (f_2,g,h_2) (f_2,g,h_2)
Parameterized expectations (3) (d,g,h) (d,g,h)
Endogeneous gridpoints (d,d_s,g,h)

1.5. Dolo Model Classification 17

dolo Documentation, Release 0.4.9.2

1.5.5 Additional informations

calibration

In general, the models will depend on a series of scalar parameters. A reference value for the endogeneous variables
is also used, for instance to define the steady-state. We call a “calibration” a list of values for all parameters and
steady-state.

state-space

When a global solution is computed, continuous states need to be bounded. This can be done by specifying an n-
dimensional box for them.

Usually one also want to specify a finite grid, included in this grid and the interpolation method used to evaluate
between the grid points.

specification of the shocks

For DTCSCC models, the shocks follow an i.i.d. series of random variables. If the shock is normal, this one is
characterized by a covariance matrix.

For DTMSCC models, exogenous shocks are specified by a two matrices P and Q, containing respectively a list of
nodes and the transition probabilities.

Remarks

Some autodetection is possible. For instance, some equations appearing in f fonctions, can be promoted (or down-
graded) to expectational equation, based on incidence analysis.

1.6 Solution algorithms

1.6.1 Algorithms for DTCSCC models

Steady-state

Perturbation

Perfect foresight

We consider an fg model, that is a model with in the form:

𝑠𝑡 = 𝑔 (𝑠𝑡−1, 𝑥𝑡−1, 𝜖𝑡)

0 = 𝐸𝑡 (𝑓 (𝑠𝑡, 𝑥𝑡, 𝑠𝑡+1, 𝑥𝑡+1)) ⊥ 𝑢 <= 𝑥𝑡 <= 𝑢

We assume that 𝑢 and 𝑢 are constants. This is not a big restriction since the model can always be reformulated in order
to meet that constraint, by adding more equations.

Given a realization of the shocks (𝜖𝑖)𝑖>=1 and an initial state 𝑠0, the perfect foresight problem consists in finding the
path of optimal controls (𝑥𝑡)𝑡>=0 and the corresponding evolution of states (𝑠𝑡)𝑡>=0.

In practice, we find a solution over a finite horizon 𝑇 > 0 by assuming that the last state is constant forever. The
stacked system of equations satisfied by the solution is:

18 Chapter 1. Index

dolo Documentation, Release 0.4.9.2

𝑠0 = 𝑠0 𝑓(𝑠0, 𝑥0, 𝑠1, 𝑥1) ⊥ 𝑢 <= 𝑥0 <= 𝑢
𝑠1 = 𝑔(𝑠0, 𝑥0, 𝜖1) 𝑓(𝑠1, 𝑥1, 𝑠2, 𝑥2) ⊥ 𝑢 <= 𝑥1 <= 𝑢

𝑠𝑇 = 𝑔(𝑠𝑇−1, 𝑥𝑇−1, 𝜖𝑇) 𝑓(𝑠𝑇 , 𝑥𝑇 , 𝑠𝑇 , 𝑥𝑇) ⊥ 𝑢 <= 𝑥𝑇 <= 𝑢

autofunction:: dolo.algos.dtcscc.perfect_foresight.find_steady_state

Time iteration

1.6.2 Algorithms for DTMSCC models

Time-iteration

1.6.3 Algorithms for Dynare models

Perturbation

1.7 Examples

How to get a global solution of the RBC model.

How to solve a the RBC model using dynare’s statefree approach

How to compute the response to a tax under perfect foresight

Redo figures 11.9.1, 11.9.2, 11.9.3 from Ljunquvist and Sargent: RMT4 (perfect foresight exercise contributed by
Spencer Lyon).

1.7.1 Other languages:

Solve the RBC model using Julia.

1.8 Frequently Asked Questions

1.9 Advanced topics

1.9.1 Custom model types

Recipes

Different kinds of solution algorithm are associated with several ways of writing the model. Dolo provides a simple
way to define your own type of models. These models can then be translated into numerical models.

A custom definition of a model type is called a recipe. Recipes can be described in a YAML file or directly as a Python
object. Let’s inspect the file which define the fga type is used by the default time-iteration algorithm.

• First the model_spec key defines a short name for the recipe.

• Second, a list of symbol types is declared. Two types of symbols are automatically

added to that list : shocks and parameters.

1.7. Examples 19

http://nbviewer.ipython.org/urls/raw.github.com/albop/dolo/master/examples/notebooks/rbc_model.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/albop/dolo/master/examples/notebooks/dynare_model.ipynb
http://nbviewer.ipython.org/urls/raw.github.com/albop/dolo/master/examples/notebooks/rbc_perfect_foresight.ipynb
http://nbviewer.ipython.org/6178683
http://nbviewer.ipython.org/urls/raw.github.com/albop/jolo/master/Solving%20RBC%20with%20Julia.ipynb

dolo Documentation, Release 0.4.9.2

• Third, all blocks of equation are described in the equation_type part by supplying a list of allowed symbol types,
with the date at which they occur.

Currently, two types of blocks are recognized by dolo:

– regular blocks (like arbitrage) consist of a list of expressions. When an equal sign is supplied
in the model file, the right hand side is substracted from the left hand side.

– definition blocks (with definition: True as in transition and auxiliary) define
the left hand side as a function of the right hand side. The left hand side must be a series of
variable at date 0.

See also:

When an actual model is checked, dolo will check that these variables are defined in the same order
as in the declaration header of the model file. It also allows for recursive definitions as long as the
block of equations forms a triangular system of the left hand side variables.

Checking a model’s validity

A recipe can be used inside Python to check the validity of a symbolic model. For instance the following code checks
that the rbc.yaml file is valid.

model = yaml_import(’rbc.yaml’)
from dolo.symbolic.recipes import recipe_fga
from dolo.symbolic.validator import validate

validate(model, recipe_fga)

If the model is valid according the its definition, the last function will not do anything. If not an error is thrown.

Producing matlab/julia code using a custom recipe

Assuming a model and a recipe are respectively defined in files model.yaml and recipe.yaml, one can generate
a compiled model for matlab model.m using the following command:

dolo-matlab model.yaml --recipe=recipe.yaml

The same can be down for Julia using:

dolo-matlab model.yaml --recipe=recipe.yaml

The resulting file will contain nested structures (or nested dictionaries depending on the target language) with the
following content:

- symbols

- val_1 (cell array with names of symbols of type 1)
- val_2
- parameters (names of parameters)
- shocks (names of shocks)

- calibration

- steady_state
- val_1 (steady_state values for symbols of type 1)
- val_2

- parameters (numeric values for parameters)

20 Chapter 1. Index

dolo Documentation, Release 0.4.9.2

- sigma (covariance matrix)

- functions

- fun1 (function of type fun1)
- fun2

The generated function handlers (here fun1 and fun2) have the following signature : fun(arg1, arg2, ...,
p) where arg_i is the i-th argument defined in the recipe as type_i, and is expected to be a vertical array of size
N x n_i where n_i is the number of variables of type type_i and N is the number of points at which the function
must be evaluated. p is a one dimensional vector of parameter values.

See also:

For row-major languages, especially for Python, arrays are expected to be of the size n_i x N so that
the function can still operate on contiguous chunks of memory when N is big.

1.9.2 Model object

Model object

Symbolic Model

1.9.3 Interpolation

There are many available methods to interpolate points when solving global models. dolo provides several of them.
They can been used with exactly the same interface. By default, dolo uses smolyak interpolation.

smolyak

linear (delaunay tessellation)

multilinear

splines

1.9.4 Compilation

Compile a generic symbolic expression

1.9.5 Model conventions

This page describes various conventions used in dolo.

Model types

There are several ways to represent a DSGE model. Here we list some of them:

1.9. Advanced topics 21

dolo Documentation, Release 0.4.9.2

state-free approach

This approach is taken in Dynare and in most perturbation softwares. The model is specified by a vectorial function

𝑓(𝑦𝑡+1, 𝑦𝑡, 𝑦𝑡−1, 𝜖𝑡) = 0

with the restriction that 𝜖𝑡 and 𝑦𝑡+1 cannot appear in the same equations. For this kind of models, the solver finds a
solution 𝑔 such that the law of motion of (𝑦𝑡) is given by: 𝑦𝑡 = 𝑔 (𝑦𝑡−1, 𝜖𝑡)

controlled process variants

We define several categories of models.

fgah

fga

fg

fgh

fg model With these versions, the state-space is chosen by the user. A law of motion for the state-space must be
specified (depending on the controls and on the shocks). And optimality conditions must be given to pin down all the
controls. The model is specified by giving 𝑔 and 𝑓 such that:

𝑠𝑡 = 𝑔 (𝑠𝑡−1, 𝑥𝑡−1, 𝜖𝑡)

𝐸𝑡 [𝑓 (𝑠𝑡, 𝑥𝑡, 𝑠𝑡+1, 𝑥𝑡+1)] = 0

The solution is a function 𝜙 such that 𝑥𝑡 = 𝜙(𝑠𝑡).

fga model In some cases, some variables can be directly expressed as a function of other variables. We call them
auxiliary variables. Auxiliary variables are restricted to depend only on contemporaneous variables (controls or states).
The model can be rewritten:

𝑎𝑡 = 𝑎 (𝑠𝑡, 𝑥𝑡)

𝑠𝑡 = 𝑔 (𝑠𝑡−1, 𝑥𝑡−1, 𝑎𝑡−1, 𝜖𝑡)

𝐸𝑡 [𝑓 (𝑠𝑡, 𝑥𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑥𝑡+1, 𝑎𝑡+1)]

22 Chapter 1. Index

dolo Documentation, Release 0.4.9.2

Clearly, by substituting the variables a everywhere, this type of model can be seen as an fg model. Hence when some
algorithm is applicable to an fg model, it can be also be applied to an fga model.

not implemented ; fgh model A sub-variant of this specification let the user choose equations to define expectations.
This is useful for PEA approaches. The model is specified by giving 𝑔, 𝑓 and ℎ such that:

𝑠𝑡 = 𝑔 (𝑠𝑡−1, 𝑥𝑡−1, 𝜖𝑡)

𝑓 (𝑠𝑡, 𝑥𝑡, 𝑧𝑡)

𝑧𝑡 = 𝐸𝑡ℎ (𝑠𝑡+1, 𝑥𝑡+1)

Same remark as for fga model: is needed, fgh models can behave exactly as an fg model.

not implemented ; fgah model A sub-variant of this specification let the user choose equations to define expecta-
tions. This is useful for PEA approaches. The model is specified by giving 𝑔, 𝑓 and ℎ such that:

𝑎𝑡 = 𝑎 (𝑠𝑡, 𝑥𝑡)

𝑠𝑡 = 𝑔 (𝑠𝑡−1, 𝑥𝑡−1, 𝑎𝑡−1, 𝜖𝑡)

𝑓 (𝑠𝑡, 𝑥𝑡, 𝑎𝑡, 𝑧𝑡)

𝑧𝑡 = 𝐸𝑡ℎ (𝑠𝑡+1, 𝑥𝑡+1, 𝑎𝑡+1)

fgah models can behave exactly as an fg model, or an fga model

Numerical Conventions

• A list of N points in a d-dimensional space is represented by a d x N matrix. In other words the last index always
corresponds to the successive observations. This is consistent with default ordering in numpy: last index varies
faster.

Note: When dolo is used to compile a model for matlab the convention is reversed: first dimension denotes the
successive points. This is adapted to matlab’s storage order (Fortran order).

• In order to evaluate many times a function 𝑓 : 𝑅𝑠 → 𝑅𝑥 for a list of N points we consider the vectorized
version:

𝑓 : 𝑅𝑠𝑥𝑅𝑁 → 𝑅𝑥𝑥𝑅𝑁 . If X is the matrix of inputs and F the matrix of output, then for any i F[i,:] is the im-
age of X[i,:] by f.

• In particular, the implementation of the model definition follow this convention, as well as the solution of the
model.

1.9. Advanced topics 23

	Index
	Introduction: What is dolo ?
	Installation
	Quick Tutorial
	Solving the rbc model
	Decision rule
	Use the model to simulate
	Error measures

	Dolo modeling language
	YAML format
	Declaration of symbols
	Declaration of equations
	Calibration section
	Shock specification
	Options

	Dolo Model Classification
	Dynare models
	Discrete Time - Continuous States - Continuous Controls models (DTCSCC)
	Discrete Time - Mixed States - Continuous Controls models (DTMSCC)
	Misc
	Additional informations

	Solution algorithms
	Algorithms for DTCSCC models
	Algorithms for DTMSCC models
	Algorithms for Dynare models

	Examples
	Other languages:

	Frequently Asked Questions
	Advanced topics
	Custom model types
	Model object
	Interpolation
	Compilation
	Model conventions

