

 Navigation

 	
 next

 	dolo 0.5.dev0 documentation

What is dolo ?

Dolo is a tool to describe and solve economic models. It provides a simple classification scheme to describe many types of models, allows to write the models as simple text files and compiles these files into efficient Python objects representing them. It also provides many reference solution algorithms to find the solution of these models under rational expectations.

Dolo understand several types of nonlinear models with occasionnally binding constraints (with or without exogenous discrete shocks), as well as local pertubations models, like Dynare. It is a very adequate tool to study zero-lower bound issues, or sudden-stop problems, for instance.

Sophisticated solution routines are available: local perturbations up to fifth order, perfect foresight solution, policy iteration, value iteration. Most of these solutions are either parallelized or vectorized. They are written in pure Python, and can easily be inspected or adapted.

Thanks to the simple and consistent Python API for models, it is possible to write models in pure Python, or to implement other solution algorithms on top it.

	Getting started
	Installation

	Running dolo

	Setting up a work environement

	The dolo language
	YAML format

	Model types

	Example

	Sections

	Model API
	Numerical Model Object

	Source documentation

	Dolo Model Classification
	Discrete Time - Continuous States - Continuous Controls models (DTCSCC)

	Solution algorithms
	Algorithms for DTCSCC models

	Algorithms for DTMSCC models

	Algorithms for Dynare models

	Examples
	Sudden Stop Model

	RBC Tutorial

	Online examples

	Frequently Asked Questions

	Miscellaneous topics
	Interpolation

	Compiler

	Nonlinear solver

	Discretization

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

Getting started

Installation

A scientific Python environement is required to run dolo, for instance Anaconda Python.

In order to install the last stable version of dolo and its dependencies, open a command-line and run:

`pip install dolo`

It is also possible to install the development version directly from Github with:

`pip install dolo`

Step-by-step instructions on windows

	Download the Anaconda installer [http://continuum.io/downloads] (choose the 64 bits/python 2.7 version)

	Install it for the current user only, so that you will be able to install to update Python packages easily.

[image: _images/anaconda_install_2.png]
Anaconda’s installer

	Open a powershell console, and type pip install dolo then Enter. When connected to the net, this command pulls and install the last stable version

[image: _images/install_dolo_2.png]
Dolo install command

Running dolo

After dolo is installed, try to solve a model by typing the following commands in an IPython shell:

from dolo import * # load the library
model = yaml_import("...") # import the model
display(model) # display the model
dr = time_iteration(model, verbose=True) # solve
sim = simulate(model, dr) # simulate

Setting up a work environement

Anylising dolo models, is usually done by editing a model file with an (.yaml) extension, then running and formating the calculations inside a Jupyter notebook. There are many other worflows, but Jupyter notebooks are becoming a de facto standard in opensource computational research, so that we strongly advise to try them first. Some chapters of this documentation are actually written as notebook, can be downloaded and run interactively.

The only step to setup the environment consists in choosing a folder to store the model and the notebooks. Then open a terminal in this folder and launch the notebook server using:

`ipython notebook`

[image: _images/open_command_prompt.png]
Open shell under windows in a given folfer

A browser window should popup. It is Jupyter’s dashboard.

[image: _images/jupyter_dashboard.png]
Jupyter’s dashboard

It lists the files in that folder. Clicking on a model file (with a .yaml extension), opens it in a new tab.

[image: _images/text_editor.png]
Jupyter’s text editor

Note

Despite the fact that the files are edited in the browser through a local webserver, the files are still regular files on the harddrive. In particular, it is possible to edit them directly, using a good text editor (vim, emacs, atom...)

To create a new notebook click on ”..” and choose IPython. This creates a new tab, containing the notebook ready to be edited and run. It consists in a succession of cells that can be run in any order by pressing Shift+Enter after one of them has been selected. More information [TODO: link]

[image: _images/notebook.png]
Jupyter notebook

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

The dolo language

The easiest way to code a model in dolo consists in using specialized Yaml files also referred to as dolo model files.

YAML format

YAML stands for Yet Another Markup Language. It is a serialization language that
allows complex data structures in a human-readable way.
Atomic elements are floats, integers and strings.
An ordered list can be defined by separating elements with commas and enclosing them with squere brackets:

[1,2,3]

Equivalently, it can be done on several line, by prepending - to each line

- 'element'
- element # quotes are optional there is no ambiguity
- third element # this is interpreted as ``'third element'``

Associative arrays map keys to (simple strings to arbitrary values) as in the following example:

{age: 18, name: peter}

Mappings can also be defined on severaly lines, and as in Python, structures can be nested by using indentation (use spaces no tabs):

age: 18
name: peter
occupations:
 - school
 - guitar
friends:
 paula: {age: 18}

The correspondance between the yaml definition and the resulting Python object
is very transparent. YAML mappings and lists are converted to Python dictionaries and lists respectiveley.

Note

In dolo, we use the additional convention that a dictionary key is interpreted as a Python objects if:

	it begins with an uppercase

	it is at least two characters long

	its the only key in its dictionary.

For instance,

- AR1:
 rho: 0.9
 sigma: 0.1
- TakeAList:
 - 0
 - 1
- notanobject:
 a: 1
 b: 2

will be interpreted in Python as:

list(
 AR1(rho=0.9, sigma=0.1),
 TakeAList(0,1),
 {'notanobject':
 'a': 1,
 'b': 2
 }
)

Any model file must be syntactically correct in the Yaml sense, before the
content is analysed further. More information about the YAML syntax can be found
on the YAML website [http://www.yaml.org/], especially from the language specification [http://www.yaml.org/].

Model types

Note, that dolo currently allows to define three types of models:

	dynare models for which a set of first order conditions are perturbated around a steady-state

	continous states - continous controls (CSCC models) that can be solve on a compact state-space, possibly with occasionally binding constraints

	mixed states - continuous controls (MSCC models) : a variant of the former category where some of the states follow an exogenous discrete markov process

Those models, differ by the type of equations they require, but the general principles are the same for all of them. Here we abstract from the differences and present only the common principles. Section [] presents these various models more in detail.
..
.. The compiler part of dolo takes a model written in a YAML format, and converts it to a Python object, that is compliant with a simple API. Hence, models can be written either using YAML files, or directly using Python syntax.

Example

Here is an example model contained in the file examples\global_models\example.yaml

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	name: Real Business Cycle

symbols:

 states: [z, k]
 controls: [i, n]
 auxiliaries: [y, c, rk, w]
 values: [V]
 shocks: [e_z]

 parameters: [beta, sigma, eta, chi, delta, alpha, rho, zbar, sig_z]

equations:

 arbitrage:
 - 1 - beta*(c/c(1))^(sigma)*(1-delta+rk(1)) | 0 <= i <= inf
 - chi*n^eta*c^sigma - w | 0 <= n <= inf

 transition:
 - z = (1-rho)*zbar + rho*z(-1) + e_z
 - k = (1-delta)*k(-1) + i(-1)

 auxiliary:
 - y = z*k^alpha*n^(1-alpha)
 - c = y - i
 - rk = alpha*y/k
 - w = (1-alpha)*y/n

 value:
 - V = log(c) + beta*V(1)

calibration:

 # parameters
 beta : 0.99
 phi: 1
 delta : 0.025
 alpha : 0.33
 rho : 0.8
 sigma: 1
 eta: 1
 sig_z: 0.016
 zbar: 1
 chi : w/c^sigma/n^eta

 # endogenous variables
 n: 0.33
 k: n/(rk/alpha)^(1/(1-alpha))
 w: (1-alpha)*z*(k/n)^(alpha)
 i: delta*k
 y: z*k^alpha*n^(1-alpha)
 c: y - i
 z: zbar
 rk: 1/beta-1+delta
 V: log(c)/(1-beta)

distribution:

 Normal:

 [[sig_z**2]]

options:

 Approximation:
 a: [1-2*sig_z, k*0.9]
 b: [1+2*sig_z, k*1.1]
 orders: [10, 50]

This model can be loaded using the command:

model = yaml_import(`examples\global_models\example.yaml`)

The function yaml_import (cross) will raise errors until the model satisfies basic compliance tests. [more of it below]. In the following subsections, we describe the various syntaxic rules prevailing while writing yaml files.

Sections

A dolo model consists in the following 4 or 5 parts:

	a symbols section where all symbols used in the model must be defined

	an equations containing the list of equations

	a calibration section providing numeric values for the symbols

	an options section containing additional informations

	a covariances or markov_chain section where exogenous shocks are defined

These section have context dependent rules. We now review each of them in detail:

Declaration section

This section is introduced by the symbols keyword. All symbols appearing in the model must be defined there.

Symbols must be valid Python identifiers (alphanumeric not beginning with a number) and are case sensitive. Greek letters (save for lambda which is a keyword) are recognized. Subscripts and superscripts can be denoted by _ and __ respectively. For instance beta_i_1__d will be pretty printed as \(beta_{i,1}^d\).

Symbols are sorted by type as in the following example:

symbols:
 variables: [a, b]
 shocks: [e]
 parameters: [rho]

Note that each type of symbol is associated with a symbol list (as [a,b]).

Note

A common mistake consists in forgetting the commas, and use spaces only. This doesn’t work since two symbols are recognized as one.

The expected types depend on the model that is being written:

	For Dynare models, all endogenous variables must be listed as variables with the exogenous shocks being listed as shocks (as in the example above).

Note

The variables, shocks and parameters keywords correspond to the var, varexo and param keywords in Dynare respectively.

	Global models require the definition of the parameters, and to provide a list

of states and controls. Mixed states model also require markov_states that follow a discrete markov chain, while continuous states model need to identify the i.i.d shocks that hit the model. If the corresponding equations are given (see next subsection) optional symbols can also be defined. Among them: values, expectations.

Declaration of equations

The equations section contains blocks of equations sorted by type.

Epxressions follow (roughly) the Dynare conventions. Common arithmetic operators (+,-,*,/,^) are allowed with conventional priorities as well as usual functions (sqrt, log, exp, sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh). The definitions of these functions match the definitions from the numpy package. All symbols appearing in an expression must either be declared in the symbols section or be one of the predefined functions.
Any symbol s that is not a parameter is assumed to be considered at date t. Values at date t+1 and t-1 are denoted by s(1) and s(-1) respectively.

All equations are implicitly enclosed by the expectation operator \(E_t\left[\cdots \right]\). Consequently, the law of motion for the capital

\[k_{t+1} = (1-\delta) k_{t} + i_{t} + \epsilon_t\]

is written as:

k = (1-delta)*k(-1) + i(-1)

while the Euler equation

\[E_t \left[1=\beta \left(\frac{c_{t+1}}{c_t} + (1-\delta)+r_{t+1} \right) \right]\]

is translated by:

1 = beta*(c/c(1))^(sigma)*(1-delta+rk(1))

Note

In Python, the exponent operator is denoted by ** while the caret operator ^ represents bitwise XOR. In dolo models, we ignore this distinction and interpret both as an exponent.

Note

The default evaluator in dolo preserves the evaluation order. Thus (c(1)/c)^(-gamma) is not evaluated in the same way (and is numerically more stable) than c(1)^(-gamma)/c^(-gamma). Currently, this is not true for symbolically computed derivatives, as expressions are automatically simplified, implying that execution order is not guaranteed. This impacts only higher order perturbations.

An equation can consist of one expression, or two expressions separated by =.
There are two types of equation blocks:

	condition blocks

In these blocks, each equation lhs = rhs define the scalar value (rhs)-(lhs)`. A list of of such equations, i.e a block, defines a multivariate function of the appearing symbols.
Certain condition blocks, can be associated with complementarity conditions separated by | as in rhs-lhs | 0 < x < 1. In this case it is advised to omit the equal sign in order to make it easier to interpret the complementarity. Also, when complementarity conditions are used, the ordering of variables appearing in the complementarities must match the declaration order (more in section Y).

	definition blocks

Definition blocks differ from condition blocks in that they define a group of variables (states or auxiliaries) as a function of the right hand side.

The types of variables appearing on the right hand side depend on the block type. The variables enumerated on the left hand-side must appear in the declaration order.

Note

In the RBC example, the auxiliary block defines variables (y,c,rk,w) that can be directly deduced from the states and the controls:

auxiliary:
 - y = z*k^alpha*n^(1-alpha)
 - c = y - i
 - rk = alpha*y/k
 - w = (1-alpha)*y/w

Note that the declaration order matches the order in which variables appear on the left hand side. Also, these variables are defined recursively: c, rk and w depend on the value for y. In contrast to the calibration block, the definition order matters. Assuming that variables where listed as (c,y,rk,w) the following block would provide incorrect result since y is not known when c is evaluated.

auxiliary:
 - c = y - i
 - y = z*k^alpha*n^(1-alpha)
 - rk = alpha*y/k
 - w = (1-alpha)*y/w

Calibration section

The role of the calibration section consists in providing values for the parameters and the variables. The calibration of all parameters appearing in the equation is of course strictly necessary while the the calibration of other types of variables is useful to define the steady-state or an initial guess to the steady-state.

The calibrated values are also substituted in other sections, including the shocks and options section. This is particularly useful to make the covariance matrix depend on model parameters, or to adapt the state-space to the model’s calibration.

The calibration is given by an associative dictionary mapping symbols to define with values. The values can be either a scalar or an expression. All symbols are treated in the same way, and values can depend upon each other as long as there is a way to resolve them recursively.

In particular, it is possible to define a parameter in order to target a special value of an endogenous variable at the steady-state. This is done in the RBC example where steady-state labour is targeted with n: 0.33 and the parameter phi calibrated so that the optimal labour supply equation holds at the steady-state (chi: w/c^sigma/n^eta).

All symbols that are defined in the symbols section but do not appear in the calibration section are initialized with the value nan without issuing any warning.

Note

No clear policy has been established yet about how to deal with undeclared symbols in the calibration section. Avoid them.

Shock specification

The way shocks are specified depends on the type of model. They are constructed using a the rules for mini-languages defined in section [ref].

Distribution

For Dynare and continuous-states models, one has to specifiy a multivariate distribution of the i.i.d. process for the vector of shocks (otherwise shocks are assumed to be constantly 0). This is done in the distribution section. A gaussian distrubution (only one supported so far), is specified by supplying the covariance matrix as a list of list as in the following example.

distribution:

 Normal: [
 [sigma_1, 0.0],
 [0.0, sigma_2]
]

Markov chains

When the model is driven by an exogenous discrete markov chain, that is for DTMSCC models, shocks are defined in the discrete_transition section. The objects allowed in this section are: MarkovChain, AR1, MarkovTensor

markov chain can be constructed in several ways:

	by listing directly a list of states, and a transition matrix as in :

discrete_transition:
 MarkovChain: # a markov chain is defined by providing:
 - [[0.0, -0.02] # a list of markov states
 [0.0, 0.02]
 [-0.1, 0.02]]
 - [[0.98, 0.01, 0.01], # a transition matrix
 [0.10, 0.01, 0.90],
 [0.05, 0.05, 0.90]]

	by using primitives to construct a discretized process from an AR1:

discrete_transition:
 AR1:
 rho: 0.9
 sigma: [
 [0.01, 0.001]
 [0.001, 0.02]
]
 N: 3
 method: rouwenhorst # the alternative is tauchen

	by combining two processes together:

discrete_transition:
 MarkovTensor:
 - AR1:
 rho: 0.9
 sigma: [
 [0.01, 0.001]
 [0.001, 0.02]
]
 N: 3
 method: rouwenhorst # the alternative is tauchen
 - AR1:
 rho: 0.9
 sigma: 0.01
 N: 2
 method: rouwenhorst # the alternative is tauchen

Options

The options section contains all informations necessary to solve the model. It can also contain arbitrary additional informations. The section follows the mini-language convention, with all calibrated values replaced by scalars and all keywords allowed.

Global solutions require the definition of an approximation space. The lower, upper bounds and approximation orders (number of nodes in each dimension) are defined as in the following example:

options:
 Approximation:
 a: [1-2*asig_z, k*0.9]
 b: [1+2*asig_z, k*1.1]
 orders: [10, 50]
 arbitrary_information

This reads as follows: the upper and lower bounds for the productivity process are 1 minus and plus two times its asymptotic standard deviation. The boundaries for the capital level are defined by a 10% bracket around its steady-state value (or the one defined in the calibration section). 10 points are used to discretize the state-space for the productivity process and 50 are used for the capital level.

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

Model API

For numerical purposes, models are essentially represented as a set of symbols,
calibration and functions representing the various equation types of the model.
This data is held in a NumericalModel object whose API is described in this chapter. Models are usually created by writing a Yaml files as described in the the previous chapter, but as we will see below, they can also be written directly.

Numerical Model Object

As previously, let’s consider, the Real Business Cycle example, from the introduction. The model object can be created using the yaml file:

model = yaml_import('models/rbc.yaml')

The object contains few meta-data:

display(model.name) # -> Real Business Cycles
display(model.model_type) # -> `dtmscc`
display(model.model_specs) # -> `(f,g,v)`

The model.name field contains a possibly long string identifying the model.
The model_type field is either 'dtmscc', 'dtcscc' or 'dynare' depending on the convention used.
The 'model.model_features' field summarizes which equations types are provided which determines the solution algorithms that can be used to solve the model. Here (f,g,v) means that arbitrage (short f), transition (short g) and value equations were provided meaning that time-iteration or value function iteration can both be used to solve the model. When using a yaml files, the model_type` and ``model_specs properties are automatically set.

The various attributes of the model directly echoe the the sections from the Yaml file.

Symbols

Symbols are held in the model.symbols dictionary, with each symbol type mapping to a list of symbol strings, that will be used in equations. Although these symbols are not needed stricto sensu for computations, they are very useful to calibrate the steady-state or to label the graphs and simulations

display(model.symbols)

Note

Although dictionaries read from the yaml file are unordered, the structure representing them in Python is actually an OrderedDict rather than a dict object. This is to allow for more predictability and conistency in outputs. The order is conventional and the keys are ordered after the list ‘variables, states, controls, auxiliaries, values, parameters’ (missing types are omitted from the list).

Calibration

Each models stores a calibration dictionary as model.calibration. This one consists in an OrderedDictionary, with the same keys as the model.symbols dictionary. The values are vectors (1d numpy arrays) of values for each symbol group. For instance the following code will print the calibrated values of the parameters:

print(zip(model.symbols['parameters'], model.calibration['parameters']))

It is possible to get the value of one or many symbols, using the .get_calibration method:

display(model.get_calibration('k')) # -> 2.9

display(model.get_calibration(['k', 'delta'])) # -> [2.9, 0.08]

The solution routines, look up at the values in model.calibration to evaluate
parameters or steady-state values. In order to change these values it is not recommended to modify these values though. It is preferable to use the model.set_calibration() routine instead. This one takes either a dict as an argument, or a set of keyword arguments. Both calls are valid:

model.set_calibration({'delta':0.01})

model.set_calibration(delta=0.08, k=2.8)

This method also understands symbolic expressions (as string) which makes it possible to define symbols as a function of other symbols:

model.set_calibration(beta='1/(1+delta)')
print(model.get_calibration('beta')) # -> nan

model.set_calibration(delta=0.04)
print(model.get_calibration(['beta', 'delta'])) # -> [0.96, 0.04]

Under the hood, the method stores the symbolic relations between symbols. It is precisely equivalent
to use the set_calibration method or to change the values in the yaml files. In particular, the calibration order is irrelevant as long as all parameters can be deduced one from another.

Functions

A model of a specific type can feature various kinds of functions. For instance, a continuous-states-continuous-controls models, solved by iterating on the Euler equations may feature a transition equation \(g\) and an arbitrage equation \(f\). Their signature is respectively \(s_t=g(s_{t-1},x_{t-1},e_t)\) and \(E_t[f(s_t,x_t,s_{t+1},x_{t+1})]\), where \(s_t\), \(x_t\) and \(e_t\) respectively represent a vector of states, controls and shocks. Implicitly, all functions are also assumed to depend on the vector of parameters \(p\).

These functions can be accessed by their type in the model.functions dictionary:

g = model.functions['transition']
f = model.functions['arbitrage']

Let’s call the arbitrage function on the steady-state value, to see the residuals at the deterministic steady-state:

s = model.calibration['states']
x = model.calibration['controls']
p = model.calibration['parameters']
res = f(s,x,s,x,p)
display(res)

The output (res) is two element vector, representing the residuals of the two arbitrage equations at the steady-state. It should be full of zero. Is it ? Great !

By inspecting the arbitrage function (f?), one can see that its call api is:

f(s,x,S,X,p,diff=False,out=None)

Since s and x are the short names for states and controls, their values at date \(t+1\) is denoted with S and X. This simple convention prevails in most of dolo source code: when possible, vectors at date t are denoted with lowercase, while future vectors are with upper case. We have already commented the presence of the paramter vector p.
Now, the generated functions also gives the option to perform in place computations, when an output vector is given:

out = numpy.ones(2)
f(s,x,s,x,p,out) # out now contains zeros

It is also possible to compute derivatives of the function by setting diff=True. In that case, the residual and jacobians with respect to the various arguments are returned as a list:

r, r_s, r_x, r_S, r_X = f(s,x,s,x,p,diff=True)

Since there are two states and two controls, the variables r_s, r_x, r_S, r_X are all 2 by 2 matrices.

The generated functions also allow for efficient vectorized evaluation. In order to evaluate the residuals \(N\) times, one needs to supply matrix arguments, instead of vectors, so that each line corresponds to one value to evaluate as in the following example:

N = 10000

vec_s = s[None,:].repeat(N, axis=0) # we repeat each line N times
vec_x = x[None,:].repeat(N, axis=0)
vec_X = X[None,:].repeat(N, axis=0)
vec_p = p[None,:].repeat(N, axis=0)
vec_s[:,0] = linspace(2,4,N) # we provide various guesses for the steady-state capital
vec_S = vec_s

out = f(vec_s,vec_x,vec_S,vec_X,vec_p) # now a 10000 x 2 array

out, out_s, out_x, out_S, out_X = f(vec_s,vec_x,vec_S,vec_X,vec_p)

The vectorized evaluation is optimized so that it is much faster to make a vectorized call rather than iterate on each point. By default, this is achieved by using the excellent numexpr library.

Note

In the preceding example, the parameters are constant for all evaluations, yet they are repeated. This is not mandatory, and the call f(vec_s, vec_x, vec_S, vec_X, p) should work exactly as if p had been repeated along the first axis. We follow there numba’s guvectorize conventions, even though they slightly differ from numpy’s ones.

Distribution and markov_chain objects

Mixed states and continuous states models specify the structure of the stochastic innovations using a markov chain or a covariance matrix respectively.
These are accessed in the model.covariances and model.markov_chain respectively. If not relevant, these structures are set to None.
A covariance matrix, is a square array, with as the number of rows given by the number of shocks. A Markov chain is a list, where the the first element enumerates values taken by discrete states, line by line, while the second element holds the stochastic matrix whose element \(i,j\) is the probability to jump from the i-th state to the j-th one.

Options structure

The model.options structure holds an information required by a particular solution method. For instance, for global methods, model.options['approximation_space'] is supposed to hold the boundaries and the number nodes at which to interpolate.

display(model.options['approximation_space'])

Source documentation

Numerical Model

Symbolic Model

The symbolic model contains all equations and calibrations as strings, which is
the way they are read from the yaml files. It is the natural base to start symbolic computations.

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

Dolo Model Classification

Dolo differentiates several types of models. Which type of model is more relevant depends on the particular problem under consideration. A model with a large number of equations, or whose behaviour consists in small fluctations around the steady-state is easier to analyse using Dynare conventions that don’t make an explicit distinction between variables.

By contrast, nonlinear or nondifferentiable global analysis, is made computationally tractable by separating symbols of diffent kinds (states, controls, values, ...) and by distinguishing between several types of equations (Bellman equations, Euler equations, ...). Each of these equations (aka feature of the model), must satisfy a precise definition. Each symbol type is characterized by a 1-character short name and a full name. For instances symbol types states, controls and shocks are consistently abbreviated by s and x respectively.

Appart from the distinction between Dynare models and nonlocal models, Dolo also treats differently global models where all states evolve continuously (DTCSCC) and models where some of the models evolve according to a discrete Markov chain (DTMSCC).

The purpose of this chapter is to define unambiguously these definitions. The solution method available for each of the features set will be detailed in the next chapter.

Discrete Time - Continuous States - Continuous Controls models (DTCSCC)

The following types of variables can be used in DTCSCC models:

	states (s)

	controls (x)

	shocks (e)

	auxiliaries (y)

	rewards (r)

	values (v)

	expectations (z)

	parameters (p)

Symbol types that are present in a model are always listed in that order.

State-space

Decisions are characterized by a vector \(s\) of continuous variables, referred to as the states. The unknown vector of controls \(x\) is a function \(\varphi\) of the states
such that:

\[x = \varphi(s)\]

The function \(\varphi\) is typically approximated by the solution algorithm. It can be either a Taylor expansion, or an intepolating object (splines, smolyak). In both cases, it behaves like a numpy gufunc and can be called on a vector or a list of points:

dr = approximate_controls(model)
s0 = model.calibration['states']
dr(s0) # evaluates on a vector
dr(s0[None,:].repeat(10, axis=0)) # works on a list of points too

Valid equations

The various equations that can be defined using these symbol types is summarized in the following table. They are also reviewed below with more details.

	Function
	Standard name
	Short name
	Definition

	Transitions
	transition
	g
	s = g(s(-1),x(-1),e)

	Lower bound
	controls_lb
	lb
	x_lb = lb(s)

	Upper bound
	controls_ub
	ub
	x_ub = ub(s)

	Auxiliary
	auxiliary
	a
	y = a(s,x)

	Utility
	utility
	u
	r = u(s,x)

	Value updating
	value_updating
	w
	v = w(s,x,v,s(1),x(1),w(1))

	Arbitrage
	arbitrage
	f
	0=f(s,x,e(1),s(1),x(1)

	Expectations
	expectation
	h
	z=h(s(1),x(1))

	Generalized expectations
	expectation_2
	h_2
	z=h_2(s,x,e(1),s(1),x(1))

	Arbitrage (explicit expectations)
	arbitrage_2
	f_2
	0=f_2(s,x,z)

	Direct response
	direct_response
	d
	x=d(s,z)

	Terminal conditions
	terminal
	f_T
	0=f_T(s,x)

	Explicit terminal conditions
	direct_terminal
	d_T
	s=d_T(s)

When present these functions can be accessed from the model.functions dictionary by using the standard name. For instance to compute the auxiliary variables at the steady-state one can compute:

recover steady-state values
s = model.calibration['states']
x = model.calibration['controls']
p = model.calibration['parameters']

compute the vector of auxiliary variables
a = model.functions['auxiliary']
y = (s,x,p)

it should correspond to the calibrated values:
calib_y = model.calibration['auxiliaries']
assert(abs(y - calib_y).max() < 0.0000001)

Transitions

- name: `transition`
- short name: `g`

Transitions are given by a function \(g\) such that at all times:

\[s_t = g(s_{t-1}, x_{t-1}, \epsilon_t)\]

where \(\epsilon_t\) is a vector of i.i.d. shocks.

Note

In the RBC model, the vector of states is \(s_t=(a_t,k_t)\).
The transitions are:

\[a_t = \rho a_{t-1} + \epsilon_t
k_t = (1-\delta)*k_{t-1} + i_{t-1}\]

The yaml file is amended with:

symbols:
 states: [a,k]
 controls: [i]
 shocks: [epsilon]
 ...
equations:
 transition:
 a = rho*a(-1) + e
 k = k(-1)*(1-delta) + i(-1)

Note that the transitions are given in the declaration order.

Auxiliary variables

- name: `auxiliary`
- short name: `a`

In order to reduce the number of variables, it is useful to define
auxiliary variables \(y_t\) using a function \(a\) such that:

\[y_t = a(s_t, x_t)\]

When they appear in an equation they are automatically substituted by
the corresponding expression in \(s_t\) and \(x_t\).
Note that auxiliary variables are not explicitely listed in the following definition. Implicitly, wherever states and controls are allowed with the same date in an equation type, then auxiliary variable are also allowed with the same date.

Note

In the RBC model, three auxiliary variables are defined \(y_t, c_t, r_{k,t}\) and \(w_t\). They are a closed form function of \(a_t, k_t, i_t, n_t\). Defining these variables speeds up computation since they are don’t need to be solved for or interpolated.

Utility function and Bellman equation

- name: `utility`
- short name: `u`

The (separable) value equation defines the value \(v_t\) of a given policy as:

\[v_t = u(s_t,x_t) + \beta E_t \left[v_{t+1} \right]\]

This gives rise to the Bellman eqution:

\[v_t = \max_{x_t} \left(u(s_t,x_t) + \beta E_t \left[v_{t+1} \right] \right)\]

These two equations are characterized by the reward function \(u\) and the discount rate \(\beta\). Function \(u\) defines the vector of symbols rewards.
Since the definition of \(u\) alone is not sufficient, the parameter used for the discount factor must be given to routines that compute the value. Several values can be computed at once, if \(U\) is a vector function and \(\beta\) a vector of discount factors, but in that case in cannot be used to solve for the Bellman equation.

Note

Our RBC example defines the value as \(v_t = \frac{(c_t)^{1-\gamma}}{1-\gamma} + \beta E_t v_{t+1}\). This information is coded using: ## TODO add labour to utility

symbols:
 ...
 rewards: [r]

equations:
 ...
 utility:
 - r = c^(1-gamma)/(1-gamma)

calibration:
 ...
 beta: 0.96 # beta is the default name of the discount

Value

- name: `value`
- short name: `w`

A more general updating equation can be useful to express non-separable utilities or prices. the vector of (generalized) values \(v^{*}\) are defined by a function w such that:

\[v_t = w(s_t,x_t,v_t,s_{t+1},x_{t+1},v_{t+1})\]

As in the separable case, this function can either be used to compute the value of a given policy \(x=\varphi()\) or in order solve the generalized Bellman equation:

\[v_t = \max_{x_t} \left(w(s_t,x_t,v_t,s_{t+1},x_{t+1},v_{t+1}) \right)\]

Note

Instead of defining the rewards of the RBC example, one can instead define a value updating equation instead:

symbols:
 ...
 values: [v]

equations:
 ...
 value:
 - v = c^(1-gamma)/(1-gamma)*(1-n...) + beta*v(1)

Boundaries

- name: `controls_lb` and `controls_ub`
- short name: `lb` and `ub`

The optimal controls must also satisfy bounds that are function of states. There are two functions \(\underline{b}()\) and \(\overline{b}()\) such that:

\[\underline{b}(s_t) \leq x_t \leq \overline{b}(s_t)\]

Note

In our formulation of the RBC model we have excluded negative investment, implying \(i_t \geq 0\). On the other hand, labour cannot be negative so that we add lower bounds to the model:

equations:
 ...
 controls_lb:
 i = 0
 n = 0

Specifying the lower bound on labour actually has no effect since agents endogeneously choose to work a positive amount of time in order to produce some consumption goods.
As for upper bounds, it is not necessary to impose some: the maximum amount of investment is limited by the Inada conditions on consumption. As for labour n, it can be arbitrarly large without creating any paradox. Thus the upper bounds are omitted (and internally treated as infinite values).

Euler equation

- name: `arbitrage` (`equilibrium`)
- short name: `f`

A general formulation of the Euler equation is:

\[0 = E_t \left[f(s_t, x_t, s_{t+1}, x_{t+1}) \right]\]

Note that the Euler equation and the boundaries interact via
“complentarity equations”. Evaluated at one given state, with
the vector of controls \(x=(x_1, ..., x_i, ..., x_{n_x})\), the
Euler equation gives us the residuals \(r=(f_1, ..., f_i, ...,
f_{n_x})\).
Suppose that the \(i\)-th control \(x_i\) is supposed to lie in the
interval
\([\underline{b}_i, \overline{b}_i]\). Then one of the following
conditions
must be true:

	\(f_i\) = 0

	\(f_i<0\) and \(x_i=\overline{b}_i\)

	\(f_i>0\) and \(x_i=\underline{b}_i\)

By definition, this set of conditions is denoted by:

	\(f_i = 0 \perp \underline{b}_i \leq x_i \leq \overline{b}_i\)

These notations extend to a vector setting so that the Euler
equations can also be written:

\[0 = E_t \left[f(s_t, x_t, s_{t+1}, x_{t+1}) \right] \perp \underline{b}(s_t) \leq x_t \leq \overline{b}(s_t)\]

Specifying the boundaries together with Euler equation, or providing them separately is exactly equivalent. In any case, when the boundaries are finite and occasionally binding, some attention should be devoted to write the Euler equations in a consistent manner. In particular, note that the Euler equations are order-sensitive.

The Euler conditions, together with the complementarity conditions typically often come from Kuhn-Tucker conditions associated with the Bellman problem, but that is not true in general.

Note

The RBC model has two Euler equations associated with investment and labour supply respectively. They are added to the model as:

arbitrage:
 - 1 - beta*(c/c(1))^(sigma)*(1-delta+rk(1)) | 0 <= i <= inf
 - w - chi*n^eta*c^sigma | 0 <= n <= inf

Putting the complementarity conditions close to the Euler equations, instead of entering them as separate equations, helps to check the sign of the Euler residuals when constraints are binding. Here, when investment is less desirable, the first expression becomes bigger. When the representative is prevented to invest less due to the constraint (i.e. \(i_t=0\)), the expression is then positive consistently with the complementarity conventions.

Expectations

- name: `expectation`
- short name: `h`

The vector of explicit expectations \(z_t\) is defined by a function \(h\) such that:

\[z_t = E_t \left[h(s_{t+1},x_{t+1}) \right]\]

In the RBC example, one can define. the expected value tomorrow of one additional unit invested tomorrow:

.. math::

 m_t=\beta*(c_{t+1}^(-\sigma)*(1-\delta+r_{k,t+1})

 It is a pure expectational variable in the sense that it is solely determined by future states and decisions. In the model file, it would be defined as:

.. code: yaml

 symbols:
 ...
 expectations: [z]

 equations:
 ...
 - z = beta*(c(1))^(-sigma)*(1-delta+rk(1))

Generalized expectations

- name: `expectation_2`
- short name: `h_2`

The vector of generalized explicit expectations \(z_t\) is defined by a function \(h^{\star}\) such that:

\[z_t = E_t \left[h^{\star}(s_t,x_t,\epsilon_{t+1},s_{t+1},x_{t+1}) \right]\]

Euler equation with expectations

- name: `arbitrage_2` (`equilibrium_2`)
- short name: `f_2`

If expectations are defined using one of the two preceding
definitions, the Euler equation can be rewritten as:

\[0 = f(s_t, x_t, z_t) \perp \underline{b}(s_t) \leq x_t \leq \overline{b}(s_t)\]

Note

Given the definition of the expectation variable \(m_t\), today’s consumption is given by: \(c_t = z_t^(-\frac{1}{sigma})\) so the Euler equations are rewritten as:

arbitrage_2:
 - 1 - beta*(c)^(sigma)/m | 0 <= i <= inf
 - w - chi*n^eta*c^sigma | 0 <= n <= inf

Note the type of the arbitrage equation (arbitrage_2 instead of arbitrage).

However \(c_t\) is not a control itself,

but the controls \(i_t, n_t\) can be easily deduced:

..math:

n_t = ((1-alpha)*z_t*k_t^alpha*m_t/chi)^(1/(eta+alpha))
i_t = z_t*k_t^\alpha*n_t^(1-\alpha) - (m_t)^(-1/sigma)

This translates into the following YAML code:

equations:
 - n = ((1-alpha)*a*k^alpha*m/chi)^(1/(eta+alpha))
 - i = z*k^alpha*n^(1-alpha) - m^(-1/sigma)

Direct response function

- name: `direct_response`
- short name: `d`

In some simple cases, there a function \(d()\) giving an explicit
definition of the controls:

\[x_t = d(s_t, z_t)\]

Compared to the preceding Euler equation, this formulation saves
computational time by removing the need to solve a nonlinear system to recover the controls implicitly defined by the Euler equation.

Terminal conditions

- name: `terminal_condition`
- short name: `f_T`

When solving a model over a finite number \(T\) of periods, there must
be a terminal condition defining the controls for the last period.
This is a function \(f^T\) such that:

\[0 = f^T(s_T, x_T)\]

Terminal conditions

- name: `terminal_condition`
- short name: `f_T_2`

Sometimes the terminal condition is given as an explicity choicie for the controls in the last period. This defines function \(f^{T,\star}\) such that:

\[x_T = f^{T,\star}(s_T)\]

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

Solution algorithms

	Algorithms for DTCSCC models
	Steady-state

	Perturbation

	Perfect foresight

	Time iteration

	Algorithms for DTMSCC models
	Time iteration

	Algorithms for Dynare models
	Perturbation

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

Algorithms for DTCSCC models

	Steady-state

	Perturbation

	Perfect foresight

	Time iteration

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

 	Algorithms for DTCSCC models

Steady-state

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

 	Algorithms for DTCSCC models

Perturbation

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

 	Algorithms for DTCSCC models

Perfect foresight

We consider an fg model, that is a model with in the form:

\(s_t = g\left(s_{t-1}, x_{t-1}, \epsilon_t \right)\)

\(0 = E_t \left(f\left(s_{t}, x_{t}, s_{t+1}, x_{t+1}\right) \right) \ \perp \ \underline{u} <= x_t <= \overline{u}\)

We assume that \(\underline{u}\) and \(\overline{u}\) are constants. This is not a big restriction since the model can always be reformulated in order to meet that constraint, by adding more equations.

Given a realization of the shocks \((\epsilon_i)_{i>=1}\) and an initial state \(s_0\), the perfect foresight
problem consists in finding the path of optimal controls \((x_t)_{t>=0}\) and the corresponding
evolution of states \((s_t)_{t>=0}\).

In practice, we find a solution over a finite horizon \(T>0\) by assuming that the last state is constant forever.
The stacked system of equations satisfied by the solution is:

	
	

	\(s_0 = s_0\)
	\(f(s_0, x_0, s_1, x_1) \perp \underline{u} <= x_0 <= \overline{u}\)

	\(s_1 = g(s_0, x_0, \epsilon_1)\)
	\(f(s_1, x_1, s_2, x_2) \perp \underline{u} <= x_1 <= \overline{u}\)

	
	

	\(s_T = g(s_{T-1}, x_{T-1}, \epsilon_T)\)
	\(f(s_T, x_T, s_T, x_T) \perp \underline{u} <= x_T <= \overline{u}\)

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

 	Algorithms for DTCSCC models

Time iteration

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

Algorithms for DTMSCC models

	Time iteration

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

 	Algorithms for DTMSCC models

Time iteration

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

Algorithms for Dynare models

	Perturbation

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Solution algorithms

 	Algorithms for Dynare models

Perturbation

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

Examples

	Sudden Stop Model
	importing necessary functions

	writing the model

	importing the model

	Sensitivity analysis

	RBC Tutorial
	Solving the rbc model

	Decision rule

	Use the model to simulate

	Error measures

Online examples

How to get a global solution [http://nbviewer.ipython.org/urls/raw.github.com/albop/dolo/master/examples/notebooks/rbc_model.ipynb] of the RBC model.

How to solve a the RBC model using dynare’s statefree approach [http://nbviewer.ipython.org/urls/raw.github.com/albop/dolo/master/examples/notebooks/dynare_model.ipynb]

How to compute the response to a tax under perfect foresight [http://nbviewer.ipython.org/urls/raw.github.com/albop/dolo/master/examples/notebooks/rbc_perfect_foresight.ipynb]

Redo figures 11.9.1, 11.9.2, 11.9.3 from Ljunquvist and Sargent: RMT4 [http://nbviewer.ipython.org/6178683] (perfect foresight exercise contributed by Spencer Lyon).
..
.. Other languages:
.. —————-
..
.. Solve the RBC model using Julia [http://nbviewer.ipython.org/urls/raw.github.com/albop/jolo/master/Solving%20RBC%20with%20Julia.ipynb].

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Examples

Sudden Stop Model

In this notebook we replicate the baseline model exposed in

From Sudden Stops to Fisherian Deflation, Quantitative Theory and Policy
by Anton Korinek and Enrique G. Mendoza

The file sudden_stop.yaml which is printed below, describes the
model, and must be included in the same directory as this notebook.

importing necessary functions

%pylab inline

Populating the interactive namespace from numpy and matplotlib

from dolo import *
from dolo.algos.dtmscc.time_iteration import time_iteration
from dolo.algos.dtmscc.simulations import plot_decision_rule, simulate

writing the model

cd ../models

C:UsersPabloDocumentsGitHubdoloexamplesmodels

filename = 'https://raw.githubusercontent.com/EconForge/dolo/master/examples/models/sudden_stop.yaml'
filename = 'sudden_stop.yaml'
the model file is coded in a separate file called sudden_stop.yaml
note how the borrowing constraint is implemented as complementarity condition
pcat(filename)

 	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

	# This file adapts the model described in
"From Sudden Stops to Fisherian Deflation, Quantitative Theory and Policy"
by Anton Korinek and Enrique G. Mendoza

name: Sudden Stop (General)

model_spec: mfga

symbols:

 markov_states: [y]
 states: [l]
 controls: [b, lam]
 auxiliaries: [c]
 values: [V, Vc]
 parameters: [beta, R, sigma, a, mu, kappa, delta_y, pi, lam_inf]

equations:

 transition:

 - l = b(-1)

 arbitrage:

 - lam = b/c
 - beta*(c(1)/c)^(-sigma)*R - 1 | lam_inf <= lam <= inf

 auxiliary:

 - c = 1 + y + l*R - b

 value:

 - V = c^(1.0-sigma)/(1.0-sigma) + beta*V(1)
 - Vc = c^(1.0-sigma)/(1.0-sigma)

discrete_transition:

 MarkovChain:

 - [[1.0-delta_y], # bad state
 [1.0]] # good state

 - [[0.5, 1-0.5], # probabilities [p(L|L), p(H|L)]
 [0.5, 0.5]] # probabilities [p(L|H), p(H|H)]

calibration:

 beta: 0.95
 R: 1.03
 sigma: 2.0
 a: 1/3
 mu: 0.8
 kappa: 1.3
 delta_y: 0.03
 pi: 0.05
 lam_inf: -0.2
 y: 1.0
 c: 1.0 + y
 b: 0.0
 l: 0.0
 lam: 0.0

 V: c^(1.0-sigma)/(1.0-sigma)/(1.0-beta)
 Vc: c^(1.0-sigma)/(1.0-sigma)

options:

 approximation_space:

 a: [-1.0]
 b: [1.0]
 orders: [10]

importing the model

Note, that residuals, are not zero at the calibration we supply. This is
because the representative agent is impatient and we have
\(\beta<1/R\). In this case it doesn’t matter.

By default, the calibrated value for endogenous variables are used as a
(constant) starting point for the decision rules.

model = yaml_import('sudden_stop.yaml')
model

Model type detected as 'dtmscc'

Model object:

- name: "Sudden Stop (General)"
- type: "dtmscc"
- file: "sudden_stop.yaml

- residuals:

 transition
 1 : 0.0000 : l = b(-1)

 arbitrage
 1 : 0.0000 : lam = b/c

 RBC Tutorial

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Examples

RBC Tutorial

Solving the rbc model

This worksheet demonstrates how to solve the RBC model with the
dolo [http://econforge.github.io/dolo/] library and how to generates
impulse responses and stochastic simulations from the solution.

	This notebook is distributed with dolo in : examples\notebooks\.
The notebook was opened and run from that directory.

	The model file is in : examples\global_models\

First we import the dolo library.

%pylab inline

Populating the interactive namespace from numpy and matplotlib

from dolo import *

The RBC model is defined in a
YAML [http://www.yaml.org/spec/1.2/spec.html#Introduction] file
which we can read locally or pull off the web.

filename = ('https://raw.githubusercontent.com/EconForge/dolo'
 '/master/examples/models/rbc.yaml')

#filename='../models/rbc.yaml'

pcat(filename)

 	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

	name: RBC

model_spec: fga

symbols:

 states: [z, k]
 controls: [i, n]
 auxiliaries: [c, rk, w]
 values: [V]
 shocks: [e_z]

 parameters: [beta, sigma, eta, chi, delta, alpha, rho, zbar, sig_z]

equations:

 arbitrage:
 - 1 = beta*(c/c(1))^(sigma)*(1-delta+rk(1)) | 0 <= i <= inf
 - w - chi*n^eta*c^sigma | 0 <= n <= inf

 transition:
 - z = (1-rho)*zbar + rho*z(-1) + e_z
 - k = (1-delta)*k(-1) + i(-1)

 auxiliary:
 - c = z*k^alpha*n^(1-alpha) - i
 - rk = alpha*z*(n/k)^(1-alpha)
 - w = (1-alpha)*z*(k/n)^(alpha)

 value:
 - V = log(c) + beta*V(1)

calibration:

 beta : 0.99
 phi: 1
 chi : w/c^sigma/n^eta
 delta : 0.025
 alpha : 0.33
 rho : 0.8
 sigma: 1
 eta: 1
 zbar: 1
 sig_z: 0.016

 z: zbar
 rk: 1/beta-1+delta
 w: (1-alpha)*z*(k/n)^(alpha)
 n: 0.33
 k: n/(rk/alpha)^(1/(1-alpha))
 i: delta*k
 c: z*k^alpha*n^(1-alpha) - i

 V: log(c)/(1-beta)

covariances:

 [[sig_z**2]]

options:

 approximation_space:
 a: [1-2*sig_z, k*0.9]
 b: [1+2*sig_z, k*1.1]
 orders: [10, 50]

yaml_import(filename) reads the YAML file and generates a model
object.

model = yaml_import(filename)

The model file already has values for steady-state variables stated in
the calibration section so we can go ahead and check that they are
correct by computing the model equations at the steady state.

model.residuals()

OrderedDict([('transition', array([0.00000000e+00, 2.50466314e-13])), ('arbitrage', array([-1.01030295e-14, -3.78141962e-12])), ('auxiliary', array([-3.28626015e-13, 7.63278329e-17, 4.48352466e-12])), ('value', array([7.81597009e-14]))])

Printing the model also lets us have a look at all the model equations
and check that all residual errors are 0 at the steady-state, but with
less display prescision.

print(model)

Model object:

- name: "RBC"
- type: "fga"
- file: "https://raw.githubusercontent.com/EconForge/dolo/master/examples/models/rbc.yaml

- residuals:

 transition
 1 : 0.0000 : z = (1-rho)*zbar + rho*z(-1) + e_z
 2 : 0.0000 : k = (1-delta)*k(-1) + i(-1)

 arbitrage
 1 : 0.0000 : 1 = beta*(c/c(1))**(sigma)*(1-delta+rk(1)) | 0 <= i <= inf
 2 : 0.0000 : w - chi*n**eta*c**sigma | 0 <= n <= inf

 auxiliary
 1 : 0.0000 : c = z*k**alpha*n**(1-alpha) - i
 2 : 0.0000 : rk = alpha*z*(n/k)**(1-alpha)
 3 : 0.0000 : w = (1-alpha)*z*(k/n)**(alpha)

 value
 1 : 0.0000 : V = log(c) + beta*V(1)

Next we compute a solution to the model using a second order
perturbation method (see the source for the
approximate_controls [https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/perturbations.py]
function). The result is a decsion rule object. By decision rule we
refer to any object is callable and maps states to decisions. This
particular decision rule object is a TaylorExpansion (see the source for
the
TaylorExpansion [https://github.com/EconForge/dolo/blob/master/dolo/numeric/taylor_expansion.py]
class).

dr_pert = approximate_controls(model, order=2)

There are 2 eigenvalues greater than 1. Expected: 2.

We now compute the global solution (see the source for the
time_iteration [https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/time_iteration.py]
function). It returns a decision rule object of type SmolyakGrid (see
the source for the
SmolyakGrid [https://github.com/EconForge/dolo/blob/master/dolo/numeric/interpolation/smolyak.py]
class).

dr_global = time_iteration(model, pert_order=1, smolyak_order=3)

Decision rule

Here we plot optimal investment and labour for different levels of
capital (see the source for the
plot_decision_rule [https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/simulations.py]
function).

Decisionbounds = [dr_global.smin[1], dr_global.smax[1]]

figsize(8,3.5)

subplot(121)
plot_decision_rule(model, dr_global, 'k', 'i', label='Global', bounds=bounds)
plot_decision_rule(model, dr_pert, 'k', 'i', label='Perturbation', bounds=bounds)
ylabel('i')
title('Investment')
legend()

subplot(122)
plot_decision_rule(model, dr_global, 'k', 'n', label='Global', bounds=bounds)
plot_decision_rule(model, dr_pert, 'k', 'n', label='Perturbation', bounds=bounds)
ylabel('n')
title('Labour')
legend()

tight_layout()
show()

[image: _images/quick_tutorial_17_0.png]
It would seem, according to this, that second order perturbation does
very well for the RBC model. We will revisit this issue more rigorously
when we explore the deviations from the model’s arbitrage section
equations.

Let us repeat the calculation of investment decisions for various values
of the depreciation rate, \(\delta\). Note that this is a
comparative statics exercise, even though the models compared are
dynamic.

original_delta=model.calibration_dict['delta']

drs = []
delta_values = linspace(0.01, 0.04,5)
for val in delta_values:
 model.set_calibration(delta=val)
 drs.append(approximate_controls(model, order=2))

figsize(5,3)

for i,dr in enumerate(drs):
 plot_decision_rule(model, dr, 'k', 'i',
 label='$\delta={}$'.format(delta_values[i]),
 bounds=bounds)

ylabel('i')
title('Investment')
legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
show()

model.set_calibration(delta=original_delta)

There are 2 eigenvalues greater than 1. Expected: 2.
There are 2 eigenvalues greater than 1. Expected: 2.
There are 2 eigenvalues greater than 1. Expected: 2.
There are 2 eigenvalues greater than 1. Expected: 2.
There are 2 eigenvalues greater than 1. Expected: 2.

[image: _images/quick_tutorial_19_1.png]
We find that more durable capital leads to higher steady state
investment and slows the rate of convergence for capital (the slopes are
roughly the same, which implies that relative to steady state capital
investment responds stronger at higher \(\delta\), this in addition
to the direct effect of depreciation).

Use the model to simulate

We will use the deterministic steady-state as a starting point.

s0 = model.calibration['states']
print(str(model.symbols['states'])+'='+str(s0))

['z', 'k']=[1. 9.35497829]

We also get the covariance matrix just in case. This is a one shock
model so all we have it the variance of \(e_z\).

sigma2_ez = model.covariances
sigma2_ez

array([[0.000256]])

Impulse response functions

Consider a 10% shock on productivity.

s1 = s0.copy()
s1[0] *= 1.1
print(str(model.symbols['states'])+'='+str(s1))

['z', 'k']=[1.1 9.35497829]

The simulate function is used both to trace impulse response
functions and compute stochastic simulations. Choosing n_exp>=1,
will result in that many “stochastic” simulations. With n_exp = 0,
we get one single simulation without any stochastic shock (see the
source for the
simulate [https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/simulations.py]
function). The output is a panda table of size \(H \times n_v\)
where \(n_v\) is the number of variables in the model and \(H\)
the number of dates.

irf = simulate(model, dr_global, s1, n_exp=0, horizon=40)
print(irf.__class__)
print(irf.shape)

<class 'pandas.core.frame.DataFrame'>
(40, 7)

Let us plot the response of consumption and investment.

figsize(8,4)
subplot(221)
plot(irf['z'])
title('Productivity')
subplot(222)
plot(irf['i'])
title('Investment')
subplot(223)
plot(irf['n'])
title('Labour')
subplot(224)
plot(irf['c'])
title('Consumption')

tight_layout()

[image: _images/quick_tutorial_31_0.png]
Note that the plotting is made using the wonderful
matplotlib [http://matplotlib.org/users/pyplot_tutorial.html]
library. Read the online
tutorials [http://matplotlib.org/users/beginner.html] to learn how
to customize the plots to your needs (e.g., using
latex [http://matplotlib.org/users/usetex.html] in annotations). If
instead you would like to produce charts in Matlab, you can easily
export the impulse response functions, or any other matrix, to a
.mat file.

irf_array = array(irf)
import scipy.io
scipy.io.savemat("export.mat", {'table': irf_array})

Now Stochastic simulations

Now we run 1000 random simulations the result is an array of size
\(H\times n_{exp} \times n_v\) where - \(H\) the number of dates
- \(n_{exp}\) the number of simulations - \(n_v\) is the number
of variables

sim = simulate(model, dr_global, s0, n_exp=1000, horizon=40)
print(sim.shape)

(40, 1000, 7)

model.variables

('z', 'k', 'i', 'n', 'c', 'rk', 'w')

We plot the responses of consumption, investment and labour to the
stochastic path of productivity.

i_z = model.variables.index('z')
i_i = model.variables.index('i')
i_n = model.variables.index('n')
i_c = model.variables.index('c')
figsize(8,4)
for i in range(1000):
 subplot(221)
 plot(sim[:, i, i_z], color='red', alpha=0.1)
 subplot(222)
 plot(sim[:, i, i_i], color='red', alpha=0.1)
 subplot(223)
 plot(sim[:, i, i_n], color='red', alpha=0.1)
 subplot(224)
 plot(sim[:, i, i_c], color='red', alpha=0.1)

subplot(221)
title('Productivity')
subplot(222)
title('Investment')
subplot(223)
title('Labour')
subplot(224)
title('Consumption')

tight_layout()

[image: _images/quick_tutorial_38_0.png]
We find that while the distribution of investment and labour converges
quickly to the ergodic distribution, that of consumption takes
noticeably longer. This is indicative of higher persistence in
consumption, which in turn could be explained by permanent income
considerations.

Descriptive statistics

The success of the RBC model is in being able to mimic patterns in the
descriptive statistics of the real economy. Let us compute some of these
descriptive statistics from our sample of stochastic simulations. First
we compute growth rates:

dsim = log(sim[1:,:,:]/sim[:-1,:,:,])
print(dsim.shape)

(39, 1000, 7)

Then we compute the volatility of growth rates for each simulation:

volat = dsim.std(axis=0)
print(volat.shape)

(1000, 7)

Then we compute the mean and a confidence interval for each variable. In
the generated table the first column contains the standard deviations of
growth rates. The second and third columns contain the lower and upper
bounds of the 95% confidence intervals, respectively.

table = column_stack([
 volat.mean(axis=0),
 volat.mean(axis=0)-1.96*volat.std(axis=0),
 volat.mean(axis=0)+1.96*volat.std(axis=0)])
table

array([[0.01667413, 0.01280193, 0.02054634],
 [0.00296542, 0.00175695, 0.00417388],
 [0.09196494, 0.06834055, 0.11558933],
 [0.01028367, 0.00788583, 0.01268152],
 [0.00313835, 0.00236476, 0.00391193],
 [0.02426923, 0.01861151, 0.02992694],
 [0.01303212, 0.01002955, 0.01603469]])

We can use the
pandas [http://pandas.pydata.org/pandas-docs/stable/10min.html]
library to present the results in a nice table.

model.variables

('z', 'k', 'i', 'n', 'c', 'rk', 'w')

import pandas
df = pandas.DataFrame(table, index=model.variables,
 columns=['Growth rate std.',
 'Lower 95% bound',
 'Upper 95% bound'])
pandas.set_option('precision', 4)
df

 	
 	Growth rate std.
 	Lower 95% bound
 	Upper 95% bound

 	z
 	 0.017
 	 0.013
 	 0.021

 	k
 	 0.003
 	 0.002
 	 0.004

 	i
 	 0.092
 	 0.068
 	 0.116

 	n
 	 0.010
 	 0.008
 	 0.013

 	c
 	 0.003
 	 0.002
 	 0.004

 	rk
 	 0.024
 	 0.019
 	 0.030

 	w
 	 0.013
 	 0.010
 	 0.016

Error measures

It is always important to get a handle on the accuracy of the solution.
The omega function computes and aggregates the errors for the
model’s arbitrage section equations. For the RBC model these are the
investment demand and labor supply equations. For each equation it
reports the maximum error over the domain and the mean error using
ergodic distribution weights (see the source for the
omega [https://github.com/EconForge/dolo/blob/master/dolo/algos/fg/accuracy.py]
function).

ErrorErrorfrom dolo.algos.dtcscc.accuracy import omega

print("Perturbation solution")
err_pert = omega(model, dr_pert)
err_pert

Perturbation solution

Euler Errors:
- max_errors : [0.00019241 0.00045583]
- ergodic : [1.37473238e-04 1.69920101e-05]

print("Global solution")
err_global=omega(model, dr_global)
err_global

Global solution

Euler Errors:
- max_errors : [1.38008607e-04 2.28991817e-06]
- ergodic : [1.32367122e-04 6.62075500e-07]

The result of omega is a subclass of dict. omega fills that
dict with some useful information that the default print does not
reveal:

err_pert.keys()

['domain', 'errors', 'densities', 'ergodic', 'max_errors', 'bounds']

In particular the domain field contains information, like bounds and
shape, that we can use to plot the spatial pattern of errors.

a = err_pert['domain'].a
b = err_pert['domain'].b
orders = err_pert['domain'].orders
errors = concatenate((err_pert['errors'].reshape(orders.tolist()+[-1]),
 err_global['errors'].reshape(orders.tolist()+[-1])),
 2)

figure(figsize=(8,6))

titles=["Investment demand pertubation errors",
 "Labor supply pertubation errors",
 "Investment demand global errors",
 "Labor supply global errors"]

for i in range(4):

 subplot(2,2,i+1)
 imgplot = imshow(errors[:,:,i], origin='lower',
 extent=(a[0], b[0], a[1], b[1]), aspect='auto')
 imgplot.set_clim(0,3e-4)
 colorbar()
 xlabel('z')
 ylabel('k')
 title(titles[i])

tight_layout()

[image: _images/quick_tutorial_55_0.png]

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Frequently Asked Questions

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

Frequently Asked Questions

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Miscellaneous topics

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

Miscellaneous topics

	Interpolation
	smolyak

	linear (delaunay tessellation)

	splines

	Compiler
	Function factory

	Nonlinear solver

	Discretization

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Interpolation

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Miscellaneous topics

Interpolation

There are many available methods to interpolate points when solving global models. dolo provides several of them.
They can been used with exactly the same interface. By default, dolo uses smolyak interpolation.

smolyak

linear (delaunay tessellation)

splines

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Compiler

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Miscellaneous topics

Compiler

Function factory

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Nonlinear solver

 Navigation

 	
 next

 	
 previous |

 	dolo 0.5.dev0 documentation

 	Miscellaneous topics

Nonlinear solver

Test

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

 Discretization

 Navigation

 	
 previous

 	dolo 0.5.dev0 documentation

 	Miscellaneous topics

Discretization

 Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

_images/install_dolo_2.png
Windows PowerShell

[indows Powershell
opyright (C) 2013 Microsoft Corporation. A1l rights reserved.

PS C:\Users\Pablo> pip install dolo
Requirement already satisfied (use --upgrade to upgrade): dolo in c:\users\pablo\anaconda\lib\site-packages
quirement already satisfied (use --upgrade to upgrade): pyyaml in c:\users\pablo\anaconda\lib\site-packages (from dol9

satisfied (use

Requirement already
dolo)
Requirement already

--upgrade to upgrade): numba>=0.13 in c:\users\pablo\anaconda\lib\site-packages (from|

satisfied (use --upgrade to upgrade): numpy in c:\users\pablo\anaconda\lib\site-packages (from dol10)|

Requirement already satisfied (use --upgrade to upgrade): numexpr in c:\users\pablo\anaconda\lib\site-packages (from dol

already satisfied (use --upgrade to upgrade): sympy in c:\users\pablo\anaconda\lib\site-packages (from dol0)

Requirement already satisfied (use --upgrade to upgrade): pandas in c:\users\pablo\anaconda\lib\site-packages (from dol1o]

Teaning up...
PS C:\Users\Pablo>

@Morton Registration Required 3

You must register Norton Internet
Security to automatically receive the
latest major product releases.

Register Now

s ENG 11:28 AM
] - al
EE - ™10 o INTL 2/13/2015

_images/quick_tutorial_17_0.png
Investment 0336 Labour

025 — Global — Global
— Perturbation 0334 — Perturbation
024 0332
< 0330
023
0328
022
0326
021 0324
80 85 90 55 o W5 b0 85 90 55 Do b5

state = k state = k

_images/quick_tutorial_38_0.png
15 Productivity 040 Investment
110 035
105 030
100 025
035 020
030 015
085 010
o EREE E3 o]
o350 Labour . Consumption
034
0340 080
033 078
033
0325 076
0320 074
0315
0310 o7
030 070
o W B W B E3 o W B W B %

introduction.html

 Navigation

 		
 next

 		
 previous |

 		dolo 0.5.dev0 documentation »

 © Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

search.html

 Navigation

 		dolo 0.5.dev0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

compilation.html

 Navigation

 		dolo 0.5.dev0 documentation »

 © Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

tutorial.html

 Navigation

 		dolo 0.5.dev0 documentation »

Quick tutorial

Here we illustrate how to solve the RBC model.

Write a model

Models are defined in YAML, which is a very readable standard for coding native data structures (see http://yaml.org/). This makes the model definition file quite easy to read. Take a look at the rbc.yaml from the examples/models directory. It is a valid YAML file. In particular, indentation defines nesting, colons define key-value associations that generate Python dicts, dashes generate Python lists, and the file must not contain any tabs. Here is its content:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

		name: Real Business Cycle

symbols:

 states: [z, k]
 controls: [i, n]
 auxiliaries: [y, c, rk, w]
 values: [V]
 shocks: [e_z]

 parameters: [beta, sigma, eta, chi, delta, alpha, rho, zbar, sig_z]

equations:

 arbitrage:
 - 1 - beta*(c/c(1))^(sigma)*(1-delta+rk(1)) | 0 <= i <= inf
 - chi*n^eta*c^sigma - w | 0 <= n <= inf

 transition:
 - z = (1-rho)*zbar + rho*z(-1) + e_z
 - k = (1-delta)*k(-1) + i(-1)

 auxiliary:
 - y = z*k^alpha*n^(1-alpha)
 - c = y - i
 - rk = alpha*y/k
 - w = (1-alpha)*y/n

 value:
 - V = log(c) + beta*V(1)

calibration:

 # parameters
 beta : 0.99
 phi: 1
 delta : 0.025
 alpha : 0.33
 rho : 0.8
 sigma: 1
 eta: 1
 sig_z: 0.016
 zbar: 1
 chi : w/c^sigma/n^eta

 # endogenous variables
 n: 0.33
 k: n/(rk/alpha)^(1/(1-alpha))
 w: (1-alpha)*z*(k/n)^(alpha)
 i: delta*k
 y: z*k^alpha*n^(1-alpha)
 c: y - i
 z: zbar
 rk: 1/beta-1+delta
 V: log(c)/(1-beta)

distribution:

 Normal:

 [[sig_z**2]]

options:

 Approximation:
 a: [1-2*sig_z, k*0.9]
 b: [1+2*sig_z, k*1.1]
 orders: [10, 50]

It consists in several part:

		First the model type is given (here fga). This instructs dolo about the kind of model it has to expect.
More information on model types (to-be-done).

		The declarations block contains all names of variables/parameters to be used in the model. Here the model contains several
kinds of variables: controls, states and auxiliaries (which are are basically definitions
that can be substituted everywhere else). There are also exogenously distributed innovations named shocks
and parameters.

		The model part consists of a list of equations sorted by type. In these equations, variables and shocks are indexed
by time: A, A(1) and A(-1) denote variable A at date t, (t-1), and t+1 respectively.
By assumption al equations are taken in expectation at date t (explanation).

transition and auxiliary are definition equations, You must define variables in the same order as in the declaration header.
Definition equation can be defined recursively, meaning that you can use a just defined variable on the right hand side.

arbitrage equations can receive complementarity constraints separated by |.
The meaning of f | a<=x<=b is interpreted as follows: either f=0 or f>0 and x=b
or f<0 and x=a. This is very useful when representing the langrangian positivity conditions coming from an
objective maximization. In that case the lagrangian would always be equal to f. Complementarity conditions must
be expressed directly as a function of the state.

		The calibration part contains

		The values of the parameters.

		The steady-state values of endogenous variables.

Values can depend upon each other and the declaration is not order dependent. In particular, parameters
allowed to depend on steady-state values.

		The covariance matrix of the shocks.

Solving the RBC model

Here we present an example where we solve the classic Real Business Cycle (RBC) model, trace its impulse response functions, and run a stochastic simulation. But unlike most packages for solving Dynamic Stochastic General Equilibrium (DSGE) models the solution will be based on a global method, i.e., a method that remains accurate also far from the deterministic steady state. For the RBC model this does not make much of a difference because local methods happen to hold up rather well. But for other models it can make a sizable difference.

See also

This example is also available as an IPython notebook [http://nbviewer.ipython.org/github/EconForge/dolo/blob/master/examples/notebooks/rbc_model.ipynb] that you can run interactively.

Importing the model :

Import dolo:

from dolo import *

Import the example file provided with dolo in examples/models subdirectory and display it.

model = yaml_import('examples/models/rbc.yaml')
display(model) # this prints the model equations

Solving the model :

Get a first order approximation of the decision rule,

dr_1 = approximate_controls(model, order=1)

... For a second order approximation pass order=2

Compute the global solution. Unless bounds have been given in the yaml file, this will use the first order solution
to approximate the asymptotic distribution. Then the state-space is defined as 2 standard deviations of this
distribution around the deterministic steady-state. By default the solution algorithm uses time-iteration to determine
the decision rules and Smolyak collocation to interpolation future decision rules.

dr_s = time_iteration(model)

Simulate the solution

Take the deterministic steady-state from the perturbation solution and consider a 1% initial shock to productivity.

s0 = dr_1.S_bar.copy() # deterministic steady-state is the fixed point of 1st order d.r.
s0[0] += 0.01

Compute irfs for the global solution using this state as the starting point

irf = simulate(model, dr_s, s0)
display(irf.shape)
display(model.variables)

Now irf is an array of dimension n_v x 40 where n_v is the number of variables of the model. It is possible
to change the number of observations by setting the horizon= argument (40 by default).

Plot the adjustment of consumption :

i_C = model.variables.index(Variable('c')) # get index of consumption
i_I = model.variables.index(Variable('i')) # get index of investment

plot(irf[i_C,:], label='consumption')
plot(irf[i_I,:], label='investment')
title('Productivity shock (impulse response function)')
legend()

We can also plot stochastic simulations by setting a number of simulations n_exp>1. In the following line, we
compute 1000 random simulations, each simulation lasting 50 periods.

sims = simulate(model, dr, s0, n_exp=100, horizon=50)
display(sims)

The resulting object is a n_x x 1000 x 50 array. The first index is the variable, the second is the simulation number
the last, the time. To plot only the first simulation :

i_C = model.variables.index(Variable('c')) # get index of consumption
i_I = model.variables.index(Variable('i')) # get index of investment

plot(irf[i_C,0,:], label='consumption')
plot(irf[i_I,0,:], label='investment')
title('Productivity shock (stochastic simulation)')
legend()

If we want to plot all simulations on the same plot :

i_I = model.variables.index(Variable('i')) # get index of investment
for i in range(100):
 plot(irf[i_I,i,:], color='red', alpha=0.1) # transparent lines makes accumulation of draws clearer
title('Productivity shock (stochastic simulation)')

 © Copyright 2012-2016, Pablo Winant.
 Created using Sphinx 1.3.5.

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/file.png

_images/open_command_prompt.png
Frequent places lem check boxes p
1 latex
Desktop
html

ile name extensions -
Hide selected Options
idden items items °

Show/hide
Documents.

v & | Search Com.. £

Pictures
Music
Videos
images

9 Google Drive
Downloads

F¥PPRPYYYRYY

_static/comment-bright.png

_images/quick_tutorial_31_0.png
12 Productivity 038 Investment
036
e 034
108 032
106 030
028
104 028
102 024
100 02
o B 5 % % E3 0 5 © 5 3 % %
00 Labour Consumption
0345 0780
0340
0775
0335
0330 0770
0325,
0 W B 2 5 3 5 W 15 2 5 %0 B

_images/quick_tutorial_55_0.png
Investment demand pertubation errors

100

95

90

85

Investment demand global errors

100

95

90

85

oooso

Labor supply pertubation errors.

097 095 095 100 101 102 103

097 095 099 100 101 102 103

000027
000024
000021
000018
000015
000012
000008
000005
000003
000000

000030
000027
000024
000021
000018
000015
000012
000008
000005
000003
000000

100
95
90
85

097 0.98 0.99 100 101 102 103

Labor supply global errors

m.&
85

097 0.98 0.99 100 101 102 103

000030
000027
000024
000021
000018

000015
000012
000008
000005
000003
000000

000030
000027
000024
000021
000018
000015
000012
000008
000005
000003
000000

_images/anaconda_install_2.png
installation.rst - c:\\Users\Pablo\Documents\GitHub\dolo - Atom

File Edit View Selection Find Packages Help

B algosrst
compilation.rst
confpy
discretization.rst
dtcscc_perfect_fore
dtcsce_perturbatic
dtcscc_steady_stal
dtcscc_time_iterat
dtmscc_time_itera
dynare_perturbatic
examples.rst
faqrst
function_factory.rs'
indexrst
installation.rst
interpolation.rst
introduction.rst
miscrst
model_apirst
model_specificatio
modeling_languag
nonlinear_solver.rs
produce_notebook
rbe_tutorialrst

tutorialrst

DDDEDDDDDDDDDDDDD0DDDD DD D D

N

N u s Wl

0 W e

untitled x installation.rst o

Installation

A scientific Pyth
Anaconda Python. (L[N Select Installation Type

ANARYIICS Please select the type of installation you would like to perform for
Anaconda 2.1.0 (64-bit).

In order to insta

open a command-1ii
. code-block:: b,
“pip install

It is also possib. O Allusers (requires admin privieges)
with:

. code-block:: b,

“pip install

Continuum Analytics, Inc

Step-by-step
S

- Download the Anaconda installer from the “web
<http://continuum.io/downloads>’ _ (choose the 64 bits/python 2.7 version).
- Run the installer and choose:

Installation

dodsource\installationrst* 2637 + 4

reStructuredText §» doc [5]+30, 3 @3

ENG 33
W il o 1 PM

INTL 2/13/2015

_images/notebook.png
ZJupyter re_model wuoses

File Edit
+ =
In [1]
In [2]
In [3]

View Insert Cell Kernel Help

& B A~ v > B C code v Cell Toolbar: | None v

%pylab inline

Populating the interactive namespace from numpy and matplotlib

Solving the rbc model

This worksheet demonstrates how to solve the RBC model with the dolo library and how to
generates impulse responses and stochastic simulations from the solution.

+ This notebook is distributed with dolo in : examples\notebooks\. The notebook was
opened and run from that directory.
+ The model file is in : examples\global_models\

First we import the dolo library.
from dolo import *
The RBC model is defined in a YAML file which we can read locally or pull off the web.

filename = ('https://raw.githubusercontent.com/EconForge/dolo’
" mactar/avamnlec /madele /rhe vaml ')

e

| Python2 O

_images/jupyter_dashboard.png
Z Jupyter

Files Running Clusters

To import a notebook, drag the file onto the listing below or click here.

| 55 “«
O & rbe_model.ipynb

O O rbe.yaml

New v

_images/text_editor.png
: J u pyter rbc.yaml + 5 hours ago

File Edit View Language YAML

name: Real Business Cycle

controls: [i, n]
auxiliaries: [y, c, rk, w]
values: [V]

1
2
3
4
5 states: [z, k]
6
7
8
9 shocks: [e_z]

10

11 parameters: [beta, sigma, eta, chi, delta, alpha, rho, zbar, sig_z]
12

13

14 equations:

15

16

17 arbitrage:

18 - 1 = beta*(c/c(1))(sigma)*(1-delta+rk(1)) | @ <= i <= inf
19 - w - chi*nreta*crsigma | @ <= n <= inf

20

21 transition:

22 - z = (1-rho)*zbar + rho*z(-1) + e_z

23 - k = (1-delta)*k(-1) + i(-1)

24

25 auxiliary:

26 - y = z*k*alpha*n”(1-alpha)

27 -c=y -1 -

_images/quick_tutorial_19_1.png
045

Investment

040
035
030
025
020
015
010

[a——
_

005,
0

05

5=0.01
5200175
50025
5003